HAGAN: Hybrid Augmented Generative Adversarial Network for Medical Image Synthesis
- URL: http://arxiv.org/abs/2405.04902v1
- Date: Wed, 8 May 2024 09:13:42 GMT
- Title: HAGAN: Hybrid Augmented Generative Adversarial Network for Medical Image Synthesis
- Authors: Zhihan Ju, Wanting Zhou, Longteng Kong, Yu Chen, Yi Li, Zhenan Sun, Caifeng Shan,
- Abstract summary: We propose the Hybrid Augmented Generative Adrial Network (HAGAN) to maintain the authenticity of structural texture and tissue cells.
HAGAN contains Attention Mixed (AttnMix) Generator, Hierarchical Discriminator and Reverse Skip Connection between Discriminator and Generator.
- Score: 39.3485363570488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical Image Synthesis (MIS) plays an important role in the intelligent medical field, which greatly saves the economic and time costs of medical diagnosis. However, due to the complexity of medical images and similar characteristics of different tissue cells, existing methods face great challenges in meeting their biological consistency. To this end, we propose the Hybrid Augmented Generative Adversarial Network (HAGAN) to maintain the authenticity of structural texture and tissue cells. HAGAN contains Attention Mixed (AttnMix) Generator, Hierarchical Discriminator and Reverse Skip Connection between Discriminator and Generator. The AttnMix consistency differentiable regularization encourages the perception in structural and textural variations between real and fake images, which improves the pathological integrity of synthetic images and the accuracy of features in local areas. The Hierarchical Discriminator introduces pixel-by-pixel discriminant feedback to generator for enhancing the saliency and discriminance of global and local details simultaneously. The Reverse Skip Connection further improves the accuracy for fine details by fusing real and synthetic distribution features. Our experimental evaluations on three datasets of different scales, i.e., COVID-CT, ACDC and BraTS2018, demonstrate that HAGAN outperforms the existing methods and achieves state-of-the-art performance in both high-resolution and low-resolution.
Related papers
- Joint Holistic and Lesion Controllable Mammogram Synthesis via Gated Conditional Diffusion Model [12.360775476995169]
Gated Conditional Diffusion Model (GCDM) is a novel framework designed to jointly synthesize holistic mammogram images and localized lesions.<n>GCDM achieves precise control over small lesion areas while enhancing the realism and diversity of synthesized mammograms.
arXiv Detail & Related papers (2025-07-25T12:10:45Z) - Pyramid Hierarchical Masked Diffusion Model for Imaging Synthesis [6.475175425060296]
The paper presents a novel image synthesis network, the Pyramid Hierarchical Masked Diffusion Model (PHMDiff)<n>Experiments on two challenging datasets demonstrate that PHMDiff achieves superior performance in both the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM)<n>The PHMDiff model, a multi-scale image synthesis framework across and within medical imaging modalities, shows significant advantages over other methods.
arXiv Detail & Related papers (2025-07-22T13:30:54Z) - Causal Disentanglement for Robust Long-tail Medical Image Generation [80.15257897500578]
We propose a novel medical image generation framework, which generates independent pathological and structural features.
We leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images.
arXiv Detail & Related papers (2025-04-20T01:54:18Z) - Unsupervised Feature Orthogonalization for Learning Distortion-Invariant Representations [0.13108652488669734]
This study introduces unORANIC+, a novel method that integrates unsupervised feature orthogonalization with the ability of a Vision Transformer.
The streamlined architecture of unORANIC+ effectively separates anatomical and image-specific attributes, resulting in robust and unbiased latent representations.
Extensive experimentation demonstrates unORANIC+'s reconstruction proficiency, corruption resilience, as well as capability to revise existing image distortions.
We confirm its adaptability to diverse datasets of varying image sources and sample sizes which positions the method as a promising algorithm for advanced medical image analysis.
arXiv Detail & Related papers (2024-09-18T19:25:38Z) - Deformation-aware GAN for Medical Image Synthesis with Substantially Misaligned Pairs [0.0]
We propose a novel Deformation-aware GAN (DA-GAN) to dynamically correct the misalignment during the image synthesis based on inverse consistency.
Experimental results show that DA-GAN achieved superior performance on a public dataset with simulated misalignments and a real-world lung MRI-CT dataset with respiratory motion misalignment.
arXiv Detail & Related papers (2024-08-18T10:29:35Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - A Self-attention Guided Multi-scale Gradient GAN for Diversified X-ray
Image Synthesis [0.6308539010172307]
Generative Adversarial Networks (GANs) are utilized to address the data limitation problem via the generation of synthetic images.
Training challenges such as mode collapse, non-convergence, and instability degrade a GAN's performance in synthesizing diversified and high-quality images.
This work proposes an attention-guided multi-scale gradient GAN architecture to model the relationship between long-range dependencies of biomedical image features.
arXiv Detail & Related papers (2022-10-09T13:17:17Z) - Evaluating the Quality and Diversity of DCGAN-based Generatively
Synthesized Diabetic Retinopathy Imagery [0.07499722271664144]
Publicly available diabetic retinopathy (DR) datasets are imbalanced, containing limited numbers of images with DR.
The imbalance can be addressed using Geneversarative Adrial Networks (GANs) to augment the datasets with synthetic images.
To evaluate the quality and diversity of synthetic images, several evaluation metrics, such as Multi-Scale Structural Similarity Index (MS-SSIM), Cosine Distance (CD), and Fr't Inception Distance (FID) are used.
arXiv Detail & Related papers (2022-08-10T23:50:01Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - MRI to PET Cross-Modality Translation using Globally and Locally Aware
GAN (GLA-GAN) for Multi-Modal Diagnosis of Alzheimer's Disease [1.7499351967216341]
generative adversarial networks (GANs) with the ability to synthesize realist images have shown great potential as an alternative to standard data augmentation techniques.
We propose a novel end-to-end, globally and locally aware image-to-image translation GAN (GLA-GAN) with a multi-path architecture that enforces both global structural integrity and fidelity to local details.
arXiv Detail & Related papers (2021-08-04T16:38:33Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.