論文の概要: Weakly-supervised Semantic Segmentation via Dual-stream Contrastive Learning of Cross-image Contextual Information
- arxiv url: http://arxiv.org/abs/2405.04913v1
- Date: Wed, 8 May 2024 09:35:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 14:54:31.160166
- Title: Weakly-supervised Semantic Segmentation via Dual-stream Contrastive Learning of Cross-image Contextual Information
- Title(参考訳): デュアルストリームコントラスト学習による弱教師付きセマンティックセマンティックセマンティックセグメンテーション
- Authors: Qi Lai, Chi-Man Vong,
- Abstract要約: 弱教師付きセマンティックセグメンテーション(WSSS)は、画像レベルのタグのみを用いてセマンティックセグメンテーションモデルを学習することを目的としている。
現在のWSSS手法のほとんどは、価値ある画像間情報(セマンティックワイド)を無視しながら、限られた単一画像(ピクセルワイド)情報に焦点を当てている。
- 参考スコア(独自算出の注目度): 10.77139542242678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised semantic segmentation (WSSS) aims at learning a semantic segmentation model with only image-level tags. Despite intensive research on deep learning approaches over a decade, there is still a significant performance gap between WSSS and full semantic segmentation. Most current WSSS methods always focus on a limited single image (pixel-wise) information while ignoring the valuable inter-image (semantic-wise) information. From this perspective, a novel end-to-end WSSS framework called DSCNet is developed along with two innovations: i) pixel-wise group contrast and semantic-wise graph contrast are proposed and introduced into the WSSS framework; ii) a novel dual-stream contrastive learning (DSCL) mechanism is designed to jointly handle pixel-wise and semantic-wise context information for better WSSS performance. Specifically, the pixel-wise group contrast learning (PGCL) and semantic-wise graph contrast learning (SGCL) tasks form a more comprehensive solution. Extensive experiments on PASCAL VOC and MS COCO benchmarks verify the superiority of DSCNet over SOTA approaches and baseline models.
- Abstract(参考訳): 弱教師付きセマンティックセグメンテーション(WSSS)は、画像レベルのタグのみを用いてセマンティックセグメンテーションモデルを学習することを目的としている。
ディープラーニングアプローチに関する10年以上の研究にもかかわらず、WSSSと完全なセマンティックセグメンテーションの間には、依然として大きなパフォーマンスギャップがある。
現在のほとんどのWSSSメソッドは、価値ある画像間情報(セマンティックワイド)を無視しながら、常に限られた単一画像(ピクセルワイド)情報に焦点を合わせています。
この観点から、DSCNetと呼ばれる新しいエンドツーエンドWSSSフレームワークが2つの革新と共に開発されている。
一 画素単位でのグループコントラスト及び意味的にグラフコントラストを提案して、WSSSフレームワークに導入すること。
二 新たな二流コントラスト学習(DSCL)機構は、WSSSの性能向上のために、画素・ワイド・セマンティック・ワイド・コンテキスト情報を共同で扱うように設計されている。
具体的には、ピクセルワイドグループコントラスト学習(PGCL)とセマンティックワイドグラフコントラスト学習(SGCL)タスクがより包括的なソリューションとなっている。
PASCAL VOCとMS COCOベンチマークの大規模な実験は、SOTAアプローチやベースラインモデルよりもDSCNetの方が優れていることを検証している。
関連論文リスト
- Dcl-Net: Dual Contrastive Learning Network for Semi-Supervised
Multi-Organ Segmentation [12.798684146496754]
半教師型MOSのための2段階のDual Contrastive Learning Networkを提案する。
ステージ1では、画像間の暗黙的な連続性と類似性を調べるために、類似性に基づくグローバルコントラスト学習を開発する。
ステージ2では,クラス表現をさらに惹きつけるために,臓器を意識した局所的コントラスト学習を提案する。
論文 参考訳(メタデータ) (2024-03-06T07:39:33Z) - Weakly-Supervised Semantic Segmentation with Image-Level Labels: from
Traditional Models to Foundation Models [33.690846523358836]
弱教師付きセマンティックセマンティックセグメンテーション(WSSS)はピクセルレベルのラベルを避ける効果的なソリューションである。
私たちは、WSSSの最も難しい形態であるイメージレベルのラベルによるWSSSに焦点を当てています。
本稿では,WSSS の文脈において,Segment Anything Model (SAM) などの視覚基盤モデルの適用性について検討する。
論文 参考訳(メタデータ) (2023-10-19T07:16:54Z) - ISLE: A Framework for Image Level Semantic Segmentation Ensemble [5.137284292672375]
従来のセマンティックセグメンテーションネットワークは、最先端の予測品質に到達するために、大量のピクセル単位のアノテートラベルを必要とする。
クラスレベルで異なるセマンティックセグメンテーション手法のセットに「擬似ラベル」のアンサンブルを用いるISLEを提案する。
私たちはISLEの個々のコンポーネントよりも2.4%改善しています。
論文 参考訳(メタデータ) (2023-03-14T13:36:36Z) - In-N-Out Generative Learning for Dense Unsupervised Video Segmentation [89.21483504654282]
本稿では,ラベルなしビデオから視覚的対応を学習する,教師なしビデオオブジェクト(VOS)タスクに焦点を当てる。
In-aNd-Out(INO)生成学習を純粋に生成的観点から提案する。
我々のINOは、最先端の手法をかなりのマージンで上回っている。
論文 参考訳(メタデータ) (2022-03-29T07:56:21Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
本稿では,単一段階弱教師付きセマンティックセマンティックセマンティックセマンティクス(WSSS)と半教師付きセマンティクスセマンティクスセマンティクス(SSSS)のための自己教師付き低ランクネットワーク(SLRNet)を提案する。
SLRNetは、画像の異なるビューから複数の注意深いLR表現を同時に予測し、正確な擬似ラベルを学習する。
Pascal VOC 2012、COCO、L2IDデータセットの実験では、SLRNetは最先端のWSSSメソッドとSSSSメソッドの両方で、さまざまな設定で優れています。
論文 参考訳(メタデータ) (2022-03-19T09:19:55Z) - Object discovery and representation networks [78.16003886427885]
本研究では,事前に符号化された構造を自ら発見する自己教師型学習パラダイムを提案する。
Odinはオブジェクト発見と表現ネットワークを結合して意味のある画像のセグメンテーションを発見する。
論文 参考訳(メタデータ) (2022-03-16T17:42:55Z) - MuSCLe: A Multi-Strategy Contrastive Learning Framework for Weakly
Supervised Semantic Segmentation [39.858844102571176]
弱教師付きセマンティックセグメンテーション(WSSS)は、教師付きセマンティックセグメンテーション(SSS)メソッドで必要とされるピクセルレベルのアノテーションではなく、画像レベルのアノテーションのような弱いラベルに依存している。
本稿では,改良された特徴表現とWSSS性能を向上させるために,新しいマルチストラテジー・コントラスト学習(MuSCLe)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-18T14:38:50Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z) - CTNet: Context-based Tandem Network for Semantic Segmentation [77.4337867789772]
本研究では,空間コンテキスト情報とチャネルコンテキスト情報とを対話的に探索し,新しいコンテキストベースタンデムネットワーク(CTNet)を提案する。
セマンティックセグメンテーションのための学習表現の性能をさらに向上するため、2つのコンテキストモジュールの結果を適応的に統合する。
論文 参考訳(メタデータ) (2021-04-20T07:33:11Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。