論文の概要: Time Series Clustering With Random Convolutional Kernels
- arxiv url: http://arxiv.org/abs/2305.10457v2
- Date: Thu, 6 Jul 2023 13:36:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 17:31:34.349660
- Title: Time Series Clustering With Random Convolutional Kernels
- Title(参考訳): ランダム畳み込み核を用いた時系列クラスタリング
- Authors: Jorge Marco-Blanco, Rub\'en Cuevas
- Abstract要約: 時系列データ(気候学から金融学、医療まで)は、データマイニングにおいて大きな課題を提示している。
ひとつは時系列クラスタリングで、これはラベルなしの時系列データの大量処理に不可欠である。
R-Clusteringは、ランダムに選択されたパラメータを持つ畳み込みアーキテクチャを利用する新しい手法である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Time series data, spanning applications ranging from climatology to finance
to healthcare, presents significant challenges in data mining due to its size
and complexity. One open issue lies in time series clustering, which is crucial
for processing large volumes of unlabeled time series data and unlocking
valuable insights. Traditional and modern analysis methods, however, often
struggle with these complexities. To address these limitations, we introduce
R-Clustering, a novel method that utilizes convolutional architectures with
randomly selected parameters. Through extensive evaluations, R-Clustering
demonstrates superior performance over existing methods in terms of clustering
accuracy, computational efficiency and scalability. Empirical results obtained
using the UCR archive demonstrate the effectiveness of our approach across
diverse time series datasets. The findings highlight the significance of
R-Clustering in various domains and applications, contributing to the
advancement of time series data mining.
- Abstract(参考訳): 気候学からファイナンス、医療まで幅広いアプリケーションにわたる時系列データは、その大きさと複雑さのためにデータマイニングにおいて重大な課題を呈する。
ひとつは時系列クラスタリングであり、ラベルなしの時系列データの大量処理と貴重な洞察の解放に不可欠である。
しかし、伝統的かつ近代的な分析手法は、しばしばこれらの複雑さに苦しむ。
これらの制約に対処するために、ランダムに選択されたパラメータを持つ畳み込みアーキテクチャを利用するR-Clusteringを導入する。
大規模な評価を通じて、R-Clusteringはクラスタリングの精度、計算効率、スケーラビリティの観点から、既存の手法よりも優れた性能を示す。
UCRアーカイブを用いて得られた実験結果は,様々な時系列データセットにまたがるアプローチの有効性を示した。
この結果は、様々な領域やアプリケーションにおけるRクラスタリングの重要性を強調し、時系列データマイニングの進歩に寄与している。
関連論文リスト
- Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
時系列クラスタリングは、時間的パターンを発見するためのデータ分析において基本である。
深部時間クラスタリング手法は、ニューラルネットワークのエンドツーエンドトレーニングに標準k平均を組み込もうとしている。
LoSTerは、時系列クラスタリング問題に対する新しい密集型オートエンコーダアーキテクチャである。
論文 参考訳(メタデータ) (2024-05-08T12:31:35Z) - Fuzzy clustering of circular time series based on a new dependence
measure with applications to wind data [2.845817138242963]
時系列クラスタリングは、多くの分野のアプリケーションに欠かせない機械学習タスクである。
円列間の距離を導入し、クラスタリング手順を構築するために使用する。
ファジィアプローチが採用され、各系列を異なる会員度を持つ複数のクラスタに配置することができる。
論文 参考訳(メタデータ) (2024-01-26T12:21:57Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
論文 参考訳(メタデータ) (2022-10-02T06:58:49Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
マルチソースデータセットの不均一性と不規則性は時系列解析において重要な課題となる。
本研究では、異種時系列をモデル化するための新しいアーキテクチャ、PIETSを設計する。
PIETSは異種時間データを効果的にモデル化し、予測タスクにおける他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-09-30T20:01:19Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Hierarchical Clustering using Auto-encoded Compact Representation for
Time-series Analysis [8.660029077292346]
本稿では,学習した時系列のコンパクト表現,オートエンコードコンパクトシーケンス(AECS),階層クラスタリングアプローチを組み合わせたクラスタの識別機構を提案する。
Sequence to Sequence(seq2seq)オートエンコーダと集約型階層クラスタリングに基づくRecurrent Neural Network(RNN)を利用するアルゴリズムです。
論文 参考訳(メタデータ) (2021-01-11T08:03:57Z) - Autoencoder-based time series clustering with energy applications [0.0]
時系列クラスタリングは、データの特定の性質のため、難しい作業である。
本稿では,畳み込み型オートエンコーダとk-メノイドアルゴリズムの組み合わせによる時系列クラスタリングについて検討する。
論文 参考訳(メタデータ) (2020-02-10T10:04:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。