論文の概要: Learning Structural Causal Models through Deep Generative Models: Methods, Guarantees, and Challenges
- arxiv url: http://arxiv.org/abs/2405.05025v1
- Date: Wed, 8 May 2024 12:56:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 14:24:42.549051
- Title: Learning Structural Causal Models through Deep Generative Models: Methods, Guarantees, and Challenges
- Title(参考訳): 深部生成モデルによる構造因果モデル学習:方法,保証,課題
- Authors: Audrey Poinsot, Alessandro Leite, Nicolas Chesneau, Michèle Sébag, Marc Schoenauer,
- Abstract要約: 基礎となるディープラーニングコンポーネントや構造因果モデルに固有の仮説、保証、アプリケーションを分析する。
深い構造因果モデリングの分野における課題とオープンな疑問を強調します。
- 参考スコア(独自算出の注目度): 42.0626213927983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides a comprehensive review of deep structural causal models (DSCMs), particularly focusing on their ability to answer counterfactual queries using observational data within known causal structures. It delves into the characteristics of DSCMs by analyzing the hypotheses, guarantees, and applications inherent to the underlying deep learning components and structural causal models, fostering a finer understanding of their capabilities and limitations in addressing different counterfactual queries. Furthermore, it highlights the challenges and open questions in the field of deep structural causal modeling. It sets the stages for researchers to identify future work directions and for practitioners to get an overview in order to find out the most appropriate methods for their needs.
- Abstract(参考訳): 本稿では, 深層構造因果モデル (DSCM) の総合的なレビューを行い, 特に既知の因果構造内の観測データを用いて, 対実的クエリに応答する能力に着目した。
DSCMの特徴は、基礎となるディープラーニングコンポーネントや構造因果モデルに固有の仮説、保証、アプリケーションを分析し、その能力と異なる対実的なクエリに対処する際の制限をより詳細に理解することにある。
さらに、深い構造因果モデリングの分野における課題とオープンな疑問を強調している。
研究者が将来の仕事の方向性を識別し、実践者が彼らのニーズに最も適した方法を見つけるための概要を得るためのステージを設定します。
関連論文リスト
- StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented Generation(RAG)は、大規模言語モデル(LLM)を効果的に強化する鍵となる手段である。
本稿では,手前のタスクに対して最適な構造型を識別し,元の文書をこの構造化形式に再構成し,その結果に基づいて回答を推測するStructRAGを提案する。
実験の結果、StructRAGは最先端のパフォーマンスを実現し、特に挑戦的なシナリオに優れていた。
論文 参考訳(メタデータ) (2024-10-11T13:52:44Z) - Hierarchical Deconstruction of LLM Reasoning: A Graph-Based Framework for Analyzing Knowledge Utilization [30.349165483935682]
大規模言語モデル(LLM)が推論の知識をどのように利用するのかは、まだよく分かっていない。
我々は,DepthQAデータセットを開発し,質問を3つの深さに分解する: (i)概念的知識の想起, (ii)手続き的知識の適用, (iii)戦略的知識の分析。
差分パターンは、モデルのキャパシティとトレーニングデータ記憶の可能性にまたがって観察される。
論文 参考訳(メタデータ) (2024-06-27T19:29:36Z) - On the Role of Information Structure in Reinforcement Learning for Partially-Observable Sequential Teams and Games [55.2480439325792]
逐次的意思決定問題において、情報構造とは、異なる時点に発生するシステム内の事象が相互にどのように影響するかを記述するものである。
対照的に、現実のシーケンシャルな意思決定問題は通常、システム変数の複雑で時間的な相互依存を伴う。
情報構造を明示する新しい強化学習モデルを定式化する。
論文 参考訳(メタデータ) (2024-03-01T21:28:19Z) - Targeted Reduction of Causal Models [55.11778726095353]
因果表現学習(Causal Representation Learning)は、シミュレーションで解釈可能な因果パターンを明らかにするための有望な道を提供する。
本稿では、複雑な相互作用可能なモデルを因果因子の簡潔な集合に凝縮する方法であるTCR(Targeted Causal Reduction)を紹介する。
複雑なモデルから解釈可能な高レベルな説明を生成する能力は、玩具や機械システムで実証されている。
論文 参考訳(メタデータ) (2023-11-30T15:46:22Z) - Parrot Mind: Towards Explaining the Complex Task Reasoning of Pretrained Large Language Models with Template-Content Structure [66.33623392497599]
テンプレート・コンテント構造(T-C構造)と呼ばれる構造は指数レベルから線形レベルへの可能な空間を減少させることができることを示す。
モデルがタスク構成を達成でき、線形から対数への学習に必要なスペースをさらに削減できることを実証する。
論文 参考訳(メタデータ) (2023-10-09T06:57:45Z) - A Data-Driven Approach to Morphogenesis under Structural Instability [1.223779595809275]
形態的複雑さを理解し予測するためのデータ駆動型手法を提案する。
内部または外部の強制によって引き起こされる形態形成の物理的モデリングに基づいて機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-23T00:51:43Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - A Conceptual Model for End-to-End Causal Discovery in Knowledge Tracing [8.049552839071918]
我々は,知識追跡における因果発見問題の解決に向けて,予備的な一歩を踏み出した。
第3回NeurIPS 2022章「教育における学習経路の因果的洞察への挑戦」の項目の1つにその解決策が挙げられた。
論文 参考訳(メタデータ) (2023-05-11T21:20:29Z) - Interactive Causal Structure Discovery in Earth System Sciences [6.788563219859884]
因果構造発見(CSD)モデルは、地球システム科学を含むいくつかの領域に進出している。
彼らの広範な適応は、結果のモデルが専門家のドメイン知識を考慮していないことが多いという事実によって妨げられている。
我々は、この知識を考慮に入れ、地球系科学にCSDアルゴリズムを適用するために必要となるワークフローを提示する。
論文 参考訳(メタデータ) (2021-07-01T09:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。