Subsystem Information Capacity in Random Circuits and Hamiltonian Dynamics
- URL: http://arxiv.org/abs/2405.05076v2
- Date: Thu, 13 Jun 2024 13:15:11 GMT
- Title: Subsystem Information Capacity in Random Circuits and Hamiltonian Dynamics
- Authors: Yu-Qin Chen, Shuo Liu, Shi-Xin Zhang,
- Abstract summary: This study focuses on the effective channels formed by the subsystem of random quantum circuits and quantum Hamiltonian evolution.
We reveal the impact of different initial information encoding schemes on information dynamics including one-to-one, one-to-many, and many-to-many.
- Score: 3.6343650965508187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we explore the information capacity of open quantum systems, focusing on the effective channels formed by the subsystem of random quantum circuits and quantum Hamiltonian evolution. By analyzing the subsystem information capacity, which is closely linked to quantum coherent information of these effective quantum channels, we uncover a diverse range of dynamical and steady behaviors depending on the types of evolution. Therefore, the subsystem information capacity serves as a valuable tool for studying the intrinsic nature of various dynamical phases, such as integrable, localized, thermalized, and topological systems. We also reveal the impact of different initial information encoding schemes on information dynamics including one-to-one, one-to-many, and many-to-many. To support our findings, we provide representative examples for numerical simulations, including random quantum circuits with or without mid-circuit measurements, random Clifford Floquet circuits, free and interacting Aubry-Andr\'e models, and Su-Schrieffer-Heeger models. Those numerical results are further quantitatively explained using the effective statistical model mapping and the quasiparticle picture in the cases of random circuits and non-interacting Hamiltonian dynamics, respectively.
Related papers
- Quantum reservoir computing on random regular graphs [0.0]
Quantum reservoir computing (QRC) is a low-complexity learning paradigm that combines input-driven many-body quantum systems with classical learning techniques.
We study information localization, dynamical quantum correlations, and the many-body structure of the disordered Hamiltonian.
Our findings thus provide guidelines for the optimal design of disordered analog quantum learning platforms.
arXiv Detail & Related papers (2024-09-05T16:18:03Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
We present a quantum simulator architecture based on a linear array of qubits locally connected to a superconducting photonic-bandgap metamaterial.
The metamaterial acts both as a quantum bus mediating qubit-qubit interactions, and as a readout channel for multiplexed qubit-state measurement.
We characterize the Hamiltonian of the system using a measurement-efficient protocol based on quantum many-body chaos.
arXiv Detail & Related papers (2022-06-26T06:51:54Z) - Quantum circuits for the preparation of spin eigenfunctions on quantum
computers [63.52264764099532]
Hamiltonian symmetries are an important instrument to classify relevant many-particle wavefunctions.
This work presents quantum circuits for the exact and approximate preparation of total spin eigenfunctions on quantum computers.
arXiv Detail & Related papers (2022-02-19T00:21:46Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Scrambling Dynamics and Out-of-Time Ordered Correlators in Quantum
Many-Body Systems: a Tutorial [0.0]
This tutorial introduces the physics of quantum information scrambling in quantum many-body systems.
The goals are to understand how to precisely quantify the spreading of quantum information and how causality emerges in complex quantum systems.
arXiv Detail & Related papers (2022-02-14T22:04:12Z) - Entanglement dynamics in hybrid quantum circuits [0.0]
We review recent progress in understanding the dynamics of quantum information in ensembles of random quantum circuits.
We explore the dynamics of monitored random circuits, which can loosely be thought of as noisy dynamics arising from an environment monitoring the system.
arXiv Detail & Related papers (2021-11-15T19:00:01Z) - Probing non-Markovian quantum dynamics with data-driven analysis: Beyond
"black-box" machine learning models [0.0]
We propose a data-driven approach to the analysis of the non-Markovian dynamics of open quantum systems.
Our method allows, on the one hand, capturing the effective dimension of the environment and the spectrum of the joint system-environment quantum dynamics.
We demonstrate the performance of the proposed approach with various models of open quantum systems.
arXiv Detail & Related papers (2021-03-26T14:27:33Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.