論文の概要: SoMeR: Multi-View User Representation Learning for Social Media
- arxiv url: http://arxiv.org/abs/2405.05275v2
- Date: Thu, 20 Mar 2025 23:54:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 15:40:09.65027
- Title: SoMeR: Multi-View User Representation Learning for Social Media
- Title(参考訳): SoMeR: ソーシャルメディアのためのマルチビューユーザ表現学習
- Authors: Siyi Guo, Keith Burghardt, Valeria Pantè, Kristina Lerman,
- Abstract要約: ソーシャルメディアのユーザ表現学習は、低次元ベクトル表現におけるユーザの好み、興味、振る舞いを捉えることを目的としている。
本稿では,時間的活動,テキストの内容,プロファイル情報,ネットワークインタラクションを組み込んで総合的なユーザ肖像画を学習するフレームワークであるSoMeRを提案する。
1) 情報操作ドライバアカウントの特定,2) 主要なイベント後のオンライン偏光の測定,3) Reddit のヘイトコミュニティにおける将来のユーザ参加予測の3つのアプリケーションを通じて,SoMeR の汎用性を実証した。
- 参考スコア(独自算出の注目度): 1.7949335303516192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social media user representation learning aims to capture user preferences, interests, and behaviors in low-dimensional vector representations. These representations are critical to a range of social problems, including predicting user behaviors and detecting inauthentic accounts. However, existing methods are either designed for commercial applications, or rely on specific features like text contents, activity patterns, or platform metadata, failing to holistically model user behavior across different modalities. To address these limitations, we propose SoMeR, a Social Media user Representation learning framework that incorporates temporal activities, text contents, profile information, and network interactions to learn comprehensive user portraits. SoMeR encodes user post streams as sequences of time-stamped textual features, uses transformers to embed this along with profile data, and jointly trains with link prediction and contrastive learning objectives to capture user similarity. We demonstrate SoMeR's versatility through three applications: 1) Identifying information operation driver accounts, 2) Measuring online polarization after major events, and 3) Predicting future user participation in Reddit hate communities. SoMeR provides new solutions to better understand user behavior in the socio-political domains, enabling more informed decisions and interventions.
- Abstract(参考訳): ソーシャルメディアのユーザ表現学習は、低次元ベクトル表現におけるユーザの好み、興味、行動を把握することを目的としている。
これらの表現は、ユーザの振る舞いの予測や不正なアカウントの検出など、さまざまな社会的問題に対して重要である。
しかし、既存のメソッドは商用アプリケーション用に設計されているか、あるいはテキストの内容やアクティビティパターン、プラットフォームメタデータといった特定の機能に依存しており、異なるモダリティをまたいだユーザー行動のモデル化に失敗している。
このような制約に対処するため,ソーシャルメディアのユーザ表現学習フレームワークであるSoMeRを提案する。
SoMeRは、ユーザ投稿ストリームをタイムスタンプ付きテキスト機能のシーケンスとしてエンコードし、トランスフォーマーを使用してプロファイルデータと共にそれを埋め込み、リンク予測と対照的な学習目標を併用して、ユーザの類似性をキャプチャする。
我々は3つのアプリケーションを通してSoMeRの汎用性を実証する。
1)情報操作ドライバアカウントの特定。
2)大イベント後のオンライン偏光測定
3)Redditのヘイトコミュニティにおける今後のユーザー参加の予測。
SoMeRは、社会政治的領域におけるユーザー行動をよりよく理解するための新しいソリューションを提供し、より情報的な決定と介入を可能にします。
関連論文リスト
- Know Me, Respond to Me: Benchmarking LLMs for Dynamic User Profiling and Personalized Responses at Scale [51.9706400130481]
大規模言語モデル(LLM)は、幅広いタスクでユーザのためのパーソナライズされたアシスタントとして登場した。
PERSONAMEMは180以上のユーザ-LLMインタラクション履歴を持つキュレートされたユーザプロファイルを備えている。
LLMチャットボットのユーザプロファイルの現在状況に応じて,最も適切な応答を識別する能力を評価する。
論文 参考訳(メタデータ) (2025-04-19T08:16:10Z) - Do We Trust What They Say or What They Do? A Multimodal User Embedding Provides Personalized Explanations [35.77028281332307]
ソーシャルネットワークのためのコントリビューション対応マルチモーダルユーザ埋め込み(CAMUE)を提案する。
提案手法は,信頼できない情報の影響を自動的に軽減し,パーソナライズ可能な予測を提供する。
私たちの仕事は、より説明しやすく、信頼性があり、効果的なソーシャルメディアユーザー埋め込みの道を開く。
論文 参考訳(メタデータ) (2024-09-04T02:17:32Z) - Domain-based user embedding for competing events on social media [4.1245904895794085]
本稿では,URLドメイン共起ネットワークに基づくユーザ埋め込み手法を提案する。
以上の結果から,retweetネットワークから直接発生するユーザ埋め込みと,言語に基づくユーザ埋め込みが期待を下回る結果となった。
これらの結果から,ドメインベースのユーザ埋め込みは,競合イベントに参加するソーシャルメディアユーザを特徴付ける効果的なツールとして有効であることが示唆された。
論文 参考訳(メタデータ) (2023-08-28T18:01:14Z) - Intent-aware Multi-source Contrastive Alignment for Tag-enhanced
Recommendation [46.04494053005958]
我々は,情報ソースをまたいだ自己教師型学習を通じて,軽量で効果的な代替フレームワークを模索する。
我々は、ユーザと以前対話したアイテムに関連する補助情報とをペアリングするために、セルフスーパービジョン信号を使用する。
また,本手法はトレーニング時間を短縮しつつ,より優れた性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-11-11T17:43:19Z) - DIGMN: Dynamic Intent Guided Meta Network for Differentiated User
Engagement Forecasting in Online Professional Social Platforms [32.70471436337077]
ユーザエンゲージメントパターンの違いの大きな理由は、ユーザが異なる意図を持っていることだ。
本稿では動的ガイドメタネットワーク(DIGMN)を提案する。
我々の手法は最先端のベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2022-10-22T09:57:27Z) - The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm [154.47590401735323]
CML(Collaborative Metric Learning)は、リコメンデーションシステムにおいて人気のある手法として最近登場した。
本稿では,ユーザが複数のカテゴリの関心を持つ,困難なシナリオに焦点をあてる。
textitDiversity-Promoting Collaborative Metric Learning (DPCML) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-09-30T08:02:18Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
マルチビヘイビア情報によるユーザ購入予測は、現在のレコメンデーションシステムでは難しい問題である。
本稿では,ハイパーメタパスやハイパーメタグラフを構築するためのハイパーメタパスの概念を提案する。
最近のグラフコントラスト学習の成功により、異なる振る舞い間の依存関係を理解するために固定されたスキームを割り当てるのではなく、ユーザ行動パターンの埋め込みを適応的に学習する。
論文 参考訳(メタデータ) (2021-09-07T04:28:09Z) - Like Article, Like Audience: Enforcing Multimodal Correlations for
Disinformation Detection [20.394457328537975]
ユーザ生成コンテンツとユーザ共有コンテンツの相関を利用して、オンラインニュース記事の偽情報を検出する。
偽情報検出のためのマルチモーダル学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-08-31T14:50:16Z) - Learning User Embeddings from Temporal Social Media Data: A Survey [15.324014759254915]
我々は,簡潔な潜在ユーザ表現(a.k.a.)を学習する代表的作業について調査する。
ユーザー埋め込み)は、ソーシャルメディアユーザーの主な特徴を捉えることができる。
学習されたユーザー埋め込みは、その後、パーソナリティモデリング、自殺リスクアセスメント、購買判断予測など、さまざまな下流のユーザー分析タスクをサポートするために使用できます。
論文 参考訳(メタデータ) (2021-05-17T16:22:43Z) - Modular Interactive Video Object Segmentation: Interaction-to-Mask,
Propagation and Difference-Aware Fusion [68.45737688496654]
本稿では,マスク間相互作用とマスク伝搬を分離するモジュール型対話型VOSフレームワークを提案する。
提案手法は,フレーム間インタラクションを少なくしつつ,現在の最先端アルゴリズムよりも優れることを示す。
論文 参考訳(メタデータ) (2021-03-14T14:39:08Z) - Unveiling Real-Life Effects of Online Photo Sharing [7.358732518242146]
インパクトのある実生活状況におけるデータ共有の潜在的な効果を明らかにする新しいアプローチを提案します。
このアプローチは,(1)クラウドソーシングによって得られた状況影響評価のセット,(2)ユーザの写真を分析するために使用されるオブジェクト検出器のセット,(3)500人の視覚的ユーザプロファイルからなる真実のデータセットの3つの要素に依存している。
その結果、LERVUPは2つのランキングの相関が強いため有効であることが示唆された。
論文 参考訳(メタデータ) (2020-12-24T09:52:27Z) - Personalized Adaptive Meta Learning for Cold-start User Preference
Prediction [46.65783845757707]
パーソナライズされたユーザーの嗜好予測における共通の課題は、コールドスタート問題である。
メジャーユーザとマイナーユーザの両方を考慮するために,新たなパーソナライズ型適応型メタラーニング手法を提案する。
本手法は, マイノリティとメジャーユーザの両方に対して, 最先端の手法を劇的に向上させる。
論文 参考訳(メタデータ) (2020-12-22T05:48:08Z) - Multi-Interactive Attention Network for Fine-grained Feature Learning in
CTR Prediction [48.267995749975476]
クリックスルー率(ctr)予測シナリオでは、ユーザのシーケンシャルな動作を利用してユーザの関心を捉える。
既存の手法は主にユーザの行動に注意を払っているが、CTR予測には必ずしも適していない。
マルチインタラクティブ・アテンション・ネットワーク (MIAN) を提案し, 各種微細な特徴間の潜在関係を総合的に抽出する。
論文 参考訳(メタデータ) (2020-12-13T05:46:19Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF)は、インタラクションデータからユーザとアイテムの情報表現を学ぶための新しいモデルである。
ユーザ・イテムのインタラクション毎に意図を超越した分布をモデル化することにより、インテント・アウェアなインタラクショングラフと表現を反復的に洗練する。
DGCFはNGCF、DisenGCN、MacridVAEといった最先端モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-07-03T15:37:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。