論文の概要: Enhancing Holonic Architecture with Natural Language Processing for System of Systems
- arxiv url: http://arxiv.org/abs/2405.05365v1
- Date: Wed, 8 May 2024 18:47:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 14:52:18.622804
- Title: Enhancing Holonic Architecture with Natural Language Processing for System of Systems
- Title(参考訳): システムの自然言語処理によるホロニックアーキテクチャの強化
- Authors: Muhammad Ashfaq, Ahmed R. Sadik, Tommi Mikkonen, Muhammad Waseem, Niko M akitalo,
- Abstract要約: 本稿では,システム・オブ・システム(SoS)におけるホロトン通信を強化するための革新的なアプローチを提案する。
提案手法は,CGI,特にLarge Language Models (LLMs) の進歩を活用して,ホロンは自然言語命令を理解し,動作させることができる。
これにより、より直感的な人間-ホロンの相互作用が促進され、社会的知性が改善され、最終的には多様なシステム間の協調性が向上する。
- 参考スコア(独自算出の注目度): 3.521544134339964
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The complexity and dynamic nature of System of Systems (SoS) necessitate efficient communication mechanisms to ensure interoperability and collaborative functioning among constituent systems, termed holons. This paper proposes an innovative approach to enhance holon communication within SoS through the integration of Conversational Generative Intelligence (CGI) techniques. Our approach leverages advancements in CGI, specifically Large Language Models (LLMs), to enable holons to understand and act on natural language instructions. This fosters more intuitive human-holon interactions, improving social intelligence and ultimately leading to better coordination among diverse systems. This position paper outlines a conceptual framework for CGI-enhanced holon interaction, discusses the potential impact on SoS adaptability, usability and efficiency, and sets the stage for future exploration and prototype implementation.
- Abstract(参考訳): システム・オブ・システム(SoS)の複雑さと動的性質は、ホロンと呼ばれる構成系間の相互運用と協調機能を確保するために効率的な通信機構を必要とする。
本稿では,CGI(Conversational Generative Intelligence)技術の統合により,SoS内のホロトン通信を強化する革新的な手法を提案する。
提案手法は,CGI,特にLarge Language Models (LLMs) の進歩を活用し,ホロトンが自然言語命令を理解し,動作できるようにする。
これにより、より直感的な人間-ホロンの相互作用が促進され、社会的知性が改善され、最終的には多様なシステム間の協調性が向上する。
本稿では,CGIによるホロンの相互作用の概念的枠組みを概説し,SoSの適応性,ユーザビリティ,効率性への影響を論じ,今後の探索とプロトタイプ実装のステージを設定する。
関連論文リスト
- Large Generative Model-assisted Talking-face Semantic Communication System [55.42631520122753]
本研究では,LGM-TSC(Large Generative Model-assisted Talking-face Semantic Communication)システムを提案する。
送信機のジェネレーティブセマンティック・エクストラクタ(GSE)は、意味的にスパースな音声映像を高情報密度のテキストに変換する。
意味的曖昧さと修正のためのLarge Language Model (LLM)に基づくPrivate Knowledge Base (KB)。
BERT-VITS2とSadTalkerモデルを用いた生成意味再構成(GSR)により、テキストを高QoE音声ビデオに変換する。
論文 参考訳(メタデータ) (2024-11-06T12:45:46Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - PROMISE: A Framework for Developing Complex Conversational Interactions (Technical Report) [33.7054351451505]
本稿では,情報システムとの複雑な言語によるインタラクションを開発するためのフレームワークであるPROMISEを提案する。
本稿では、健康情報システムにおけるアプリケーションシナリオの文脈におけるPROMISEの利点を示し、複雑なインタラクションを扱う能力を示す。
論文 参考訳(メタデータ) (2023-12-06T18:59:11Z) - Online Learning and Planning in Cognitive Hierarchies [10.28577981317938]
ロボットシステムの複雑な統合推論動作をモデル化するために,既存の形式的枠組みを拡張した。
新しいフレームワークは、異なる推論コンポーネント間の相互作用をより柔軟なモデリングを可能にする。
論文 参考訳(メタデータ) (2023-10-18T23:53:51Z) - Unified Human-Scene Interaction via Prompted Chain-of-Contacts [61.87652569413429]
HSI(Human-Scene Interaction)は、AIや仮想現実といった分野において重要なコンポーネントである。
本稿では,言語コマンドによる多様なインタラクションの統一制御を支援する統一型HSIフレームワークUniHSIを提案する。
論文 参考訳(メタデータ) (2023-09-14T17:59:49Z) - Self-Adaptive Large Language Model (LLM)-Based Multiagent Systems [0.0]
本稿では,大規模言語モデル(LLM)をマルチエージェントシステムに統合することを提案する。
我々は、モニタリング、分析、計画、システム適応の実行において堅牢なサポートで有名であるMAPE-Kモデルに、我々の方法論を固定する。
論文 参考訳(メタデータ) (2023-07-12T14:26:46Z) - OntoChatGPT Information System: Ontology-Driven Structured Prompts for
ChatGPT Meta-Learning [19.444636864515726]
本研究は,ChatGPTと相互作用するオントロジー駆動型構造化プロンプトシステムを利用するための包括的方法論を提案する。
得られた生産的3つのトライアドは、方法論の基礎、高度な情報技術、OntoChatGPTシステムから構成される。
論文 参考訳(メタデータ) (2023-07-11T07:31:58Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - Learning Adaptive Language Interfaces through Decomposition [89.21937539950966]
本稿では,分解による新しいハイレベルな抽象化を学習するニューラルセマンティック解析システムを提案する。
ユーザは、新しい振る舞いを記述する高レベルな発話を低レベルなステップに分解することで、対話的にシステムを教える。
論文 参考訳(メタデータ) (2020-10-11T08:27:07Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
本研究では,マルチエージェント強化学習(MARL)環境下での大規模マルチエージェント通信機構について検討する。
本稿では、より柔軟で効率的な通信トポロジを用いて、LSC(Learning Structured Communication)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-11T07:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。