論文の概要: Model Reconstruction Using Counterfactual Explanations: Mitigating the Decision Boundary Shift
- arxiv url: http://arxiv.org/abs/2405.05369v1
- Date: Wed, 8 May 2024 18:52:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 14:52:18.620199
- Title: Model Reconstruction Using Counterfactual Explanations: Mitigating the Decision Boundary Shift
- Title(参考訳): 対物的説明を用いたモデル再構成:決定境界シフトの緩和
- Authors: Pasan Dissanayake, Sanghamitra Dutta,
- Abstract要約: 我々は,CCA(Counterfactual Clamping Attack)と呼ばれる新しいモデル抽出手法を提案する。
モデル近似における誤差と,ポリトープ理論を用いたクエリ数との間に,新しい数学的関係を導出する。
実験結果から,本手法は,複数の実世界のデータセットにおいて,ターゲットと代理モデル間の忠実度の向上を図っている。
- 参考スコア(独自算出の注目度): 9.771997770574947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual explanations find ways of achieving a favorable model outcome with minimum input perturbation. However, counterfactual explanations can also be exploited to steal the model by strategically training a surrogate model to give similar predictions as the original (target) model. In this work, we investigate model extraction by specifically leveraging the fact that the counterfactual explanations also lie quite close to the decision boundary. We propose a novel strategy for model extraction that we call Counterfactual Clamping Attack (CCA) which trains a surrogate model using a unique loss function that treats counterfactuals differently than ordinary instances. Our approach also alleviates the related problem of decision boundary shift that arises in existing model extraction attacks which treat counterfactuals as ordinary instances. We also derive novel mathematical relationships between the error in model approximation and the number of queries using polytope theory. Experimental results demonstrate that our strategy provides improved fidelity between the target and surrogate model predictions on several real world datasets.
- Abstract(参考訳): 対実的な説明は、最小の入力摂動で好ましいモデル結果を達成する方法を見つける。
しかし、反実的な説明は、元の(ターゲット)モデルと同様の予測を与えるために代理モデルを戦略的に訓練することで、モデルを盗むために利用することもできる。
本研究では, モデル抽出について, 因果的説明が決定境界にかなり近いという事実を特に活用して検討する。
そこで本研究では,従来の事例とは違って,一意の損失関数を用いて代理モデルを訓練するモデル抽出手法をCCA(Counterfactual Clamping Attack)と呼ぶ。
提案手法は,既存のモデル抽出攻撃において発生した決定境界シフトの問題を通常の事例として扱うことで緩和する。
また,モデル近似における誤差と,ポリトープ理論を用いたクエリ数との間には,新しい数学的関係を導出する。
実験結果から,本手法は,複数の実世界のデータセットにおいて,ターゲットと代理モデル間の忠実度の向上を図っている。
関連論文リスト
- Constructing Concept-based Models to Mitigate Spurious Correlations with Minimal Human Effort [31.992947353231564]
概念ボトルネックモデル(Concept Bottleneck Models, CBM)は、人間の理解可能な概念を通じて、モデルの振る舞いを開示し、導くための原則的な方法を提供する。
本稿では,これらのバイアスに無害でありながら事前学習モデルを活用するために設計された新しいフレームワークを提案する。
提案手法を複数のデータセット上で評価し,その解釈可能性を維持しつつ,素粒子相関によるモデル依存の低減効果を示した。
論文 参考訳(メタデータ) (2024-07-12T03:07:28Z) - Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models [15.817239008727789]
本研究では,異なるドメインで生成された場合,サンプルがどのようなものであったのかを仮定した,ドメイン反事実と呼ばれる特定のタイプの因果クエリを解析する。
本研究では, 潜在構造因果モデル (SCM) の回復は, ドメイン・デファクト・デファクトを推定するために不要であることを示す。
また、モデル生成過程を単純化し、生成モデル推定を行うための理論的基盤となる実用的なアルゴリズムも開発する。
論文 参考訳(メタデータ) (2023-06-20T04:19:06Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Bidirectional Model-based Policy Optimization [30.732572976324516]
モデルに基づく強化学習アプローチは、計画と意思決定をサポートするためにフォワードダイナミクスモデルを活用する。
本稿では,前方モデル予測における精度への依存を減らすために,後方ダイナミクスモデルを構築することを提案する。
本稿では,二方向性モデルベースポリシー (BMPO) と呼ばれる新しい手法を開発し,前向きモデルと後向きモデルの両方を用いて,政策最適化のための短い分岐ロールアウトを生成する。
論文 参考訳(メタデータ) (2020-07-04T03:34:09Z) - Model Repair: Robust Recovery of Over-Parameterized Statistical Models [24.319310729283636]
そこでは,データから推定された統計モデルを破損させた統計モデルを復元することが目的である。
モデルを教師付き学習環境に適合させるために使用する応答値ではなく,設計のみを用いてモデルを再ペアリングする手法を提案する。
論文 参考訳(メタデータ) (2020-05-20T08:41:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。