論文の概要: EarthMatch: Iterative Coregistration for Fine-grained Localization of Astronaut Photography
- arxiv url: http://arxiv.org/abs/2405.05422v2
- Date: Wed, 3 Jul 2024 13:37:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 19:34:44.240253
- Title: EarthMatch: Iterative Coregistration for Fine-grained Localization of Astronaut Photography
- Title(参考訳): EarthMatch: 宇宙飛行士の写真の微粒化のための反復的整合
- Authors: Gabriele Berton, Gabriele Goletto, Gabriele Trivigno, Alex Stoken, Barbara Caputo, Carlo Masone,
- Abstract要約: 本研究では,宇宙飛行士の写真の微粒化を再現する,反復的ホモグラフィー推定手法であるEarthMatchを提案する。
提案手法の有効性をこのデータセットで証明し,画像マーカ比較のための新しい公正な方法を提案する。
われわれの方法では、45万枚の地球の写真の高速かつ正確なローカライズが可能になります。
- 参考スコア(独自算出の注目度): 18.978718859476267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise, pixel-wise geolocalization of astronaut photography is critical to unlocking the potential of this unique type of remotely sensed Earth data, particularly for its use in disaster management and climate change research. Recent works have established the Astronaut Photography Localization task, but have either proved too costly for mass deployment or generated too coarse a localization. Thus, we present EarthMatch, an iterative homography estimation method that produces fine-grained localization of astronaut photographs while maintaining an emphasis on speed. We refocus the astronaut photography benchmark, AIMS, on the geolocalization task itself, and prove our method's efficacy on this dataset. In addition, we offer a new, fair method for image matcher comparison, and an extensive evaluation of different matching models within our localization pipeline. Our method will enable fast and accurate localization of the 4.5 million and growing collection of astronaut photography of Earth. Webpage with code and data at https://earthloc-and-earthmatch.github.io
- Abstract(参考訳): 宇宙飛行士の写真の精密でピクセル単位のジオローカライズは、この種のリモートセンシングされた地球データの可能性、特に災害管理や気候変動研究に利用するために重要である。
近年の研究では、宇宙飛行士撮影局のローカライゼーションタスクが確立されているが、大量展開にはコストがかかりすぎるか、大きすぎるローカライゼーションが発生するかのどちらかが証明されている。
そこで,我々は,宇宙飛行士の写真の微粒な位置化を高速さに重点を置いて,反復的ホモグラフィー推定法であるEarthMatchを提案する。
我々は、宇宙飛行士の撮影ベンチマークであるAIMSをジオローカライゼーションタスク自体に焦点を合わせ、このデータセットで我々の方法の有効性を証明した。
さらに、画像マーカ比較のための新しい公正な方法と、ローカライゼーションパイプライン内の異なるマッチングモデルの広範囲な評価を提供する。
われわれの方法では、45万枚の地球の写真の高速かつ正確なローカライズが可能になります。
webpage with code and data at https://earthloc-and-earthmatch.github.io
関連論文リスト
- Game4Loc: A UAV Geo-Localization Benchmark from Game Data [0.0]
クロスビューペアデータの部分的マッチングを含む,より実用的なUAV測位タスクを提案する。
実験により,UAV測地のためのデータとトレーニング手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-25T13:33:28Z) - Weakly-supervised Camera Localization by Ground-to-satellite Image Registration [52.54992898069471]
本稿では,地対衛星画像登録のための弱教師付き学習戦略を提案する。
地上画像ごとに正の衛星画像と負の衛星画像を導き出す。
また,クロスビュー画像の相対回転推定のための自己超越戦略を提案する。
論文 参考訳(メタデータ) (2024-09-10T12:57:16Z) - EarthLoc: Astronaut Photography Localization by Indexing Earth from
Space [22.398824732314015]
宇宙飛行士の写真は、科学研究と災害対応の両方に非常に価値のある、ユニークな地球観測データセットを提示する。
現在の手動のローカライゼーションの取り組みは時間がかかり、自動化されたソリューションの必要性を動機付けている。
本稿では,この課題を効果的に解決するために,画像検索を活用した新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T14:30:51Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
世界規模のジオローカライゼーションは、地球上のどこでも撮影された画像の正確な位置を特定することを目的としている。
既存のアプローチは、地球を離散的な地理的細胞に分割し、問題を分類タスクに変換する。
画像と対応するGPS位置のアライメントを強制する新しいCLIPにインスパイアされた画像-GPS検索手法であるGeoCLIPを提案する。
論文 参考訳(メタデータ) (2023-09-27T20:54:56Z) - Visual Cross-View Metric Localization with Dense Uncertainty Estimates [11.76638109321532]
本研究は、屋外ロボティクスにおける視覚的クロスビューメトリックローカライゼーションに対処する。
地上レベルのカラー画像と局地的な環境を含む衛星パッチが与えられた場合、衛星パッチ内の地上カメラの位置を特定することが課題である。
我々は、より高密度な衛星記述子、ボトルネックにおける類似性マッチング、およびマルチモーダルなローカライゼーションの曖昧さを捉えるための出力としての密度空間分布を備えた新しいネットワークアーキテクチャを考案した。
論文 参考訳(メタデータ) (2022-08-17T20:12:23Z) - 6D Camera Relocalization in Visually Ambiguous Extreme Environments [79.68352435957266]
本研究では,深海や地球外地形などの極端な環境下で得られた画像の列から,カメラのポーズを確実に推定する手法を提案する。
本手法は,室内ベンチマーク (7-Scenes データセット) における最先端手法と同等の性能を20%のトレーニングデータで達成する。
論文 参考訳(メタデータ) (2022-07-13T16:40:02Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
本稿では,地上画像と架空衛星地図とをマッチングすることにより,車載カメラのローカライゼーションの問題に対処する。
鍵となる考え方は、タスクをポーズ推定として定式化し、ニューラルネットベースの最適化によってそれを解くことである。
標準自動運転車のローカライゼーションデータセットの実験により,提案手法の優位性が確認された。
論文 参考訳(メタデータ) (2022-04-10T19:16:58Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
地上で取得したクエリ画像とジオタグ付き衛星画像の大規模データベースとをマッチングすることにより、地上から衛星画像のジオローカライズの問題に対処する。
我々の新しい手法は、衛星画像のピクセルサイズの精度まで、クエリー画像のきめ細かい位置を達成できる。
論文 参考訳(メタデータ) (2022-03-26T20:10:38Z) - Continuous Self-Localization on Aerial Images Using Visual and Lidar
Sensors [25.87104194833264]
本研究では,車両のセンサ情報を未確認対象領域の航空画像に登録することにより,屋外環境におけるジオトラッキング手法を提案する。
我々は、地上および空中画像から視覚的特徴を抽出するために、計量学習環境でモデルを訓練する。
本手法は,視認不可能な正光の自己局在化のために,エンド・ツー・エンドの微分可能なモデルでオンボードカメラを利用する最初の方法である。
論文 参考訳(メタデータ) (2022-03-07T12:25:44Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
異なる特徴により、標準ベンチマークにおけるコントラスト学習と教師あり学習の間には、非自明なギャップが持続していることが示される。
本稿では,リモートセンシングデータの空間的整合性を利用した新しいトレーニング手法を提案する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションにおけるコントラスト学習と教師あり学習のギャップを埋めるものである。
論文 参考訳(メタデータ) (2020-11-19T17:29:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。