論文の概要: Analysis and prevention of AI-based phishing email attacks
- arxiv url: http://arxiv.org/abs/2405.05435v1
- Date: Wed, 8 May 2024 21:40:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 14:42:14.321669
- Title: Analysis and prevention of AI-based phishing email attacks
- Title(参考訳): AIを用いたフィッシングメール攻撃の解析と防止
- Authors: Chibuike Samuel Eze, Lior Shamir,
- Abstract要約: 生成AIを使用して、潜在的な犠牲者それぞれに異なるメールを送ることができる。
我々は、AIが生成するフィッシングメールを識別する自動テキスト分析機能をテストするために、さまざまな機械学習ツールを使用します。
また、AIが生成したフィッシングメールのコーパスを公開している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Phishing email attacks are among the most common and most harmful cybersecurity attacks. With the emergence of generative AI, phishing attacks can be based on emails generated automatically, making it more difficult to detect them. That is, instead of a single email format sent to a large number of recipients, generative AI can be used to send each potential victim a different email, making it more difficult for cybersecurity systems to identify the scam email before it reaches the recipient. Here we describe a corpus of AI-generated phishing emails. We also use different machine learning tools to test the ability of automatic text analysis to identify AI-generated phishing emails. The results are encouraging, and show that machine learning tools can identify an AI-generated phishing email with high accuracy compared to regular emails or human-generated scam email. By applying descriptive analytic, the specific differences between AI-generated emails and manually crafted scam emails are profiled, and show that AI-generated emails are different in their style from human-generated phishing email scams. Therefore, automatic identification tools can be used as a warning for the user. The paper also describes the corpus of AI-generated phishing emails that is made open to the public, and can be used for consequent studies. While the ability of machine learning to detect AI-generated phishing email is encouraging, AI-generated phishing emails are different from regular phishing emails, and therefore it is important to train machine learning systems also with AI-generated emails in order to repel future phishing attacks that are powered by generative AI.
- Abstract(参考訳): フィッシングメール攻撃は、最も一般的で最も有害なサイバーセキュリティ攻撃の一つである。
生成AIの出現により、フィッシング攻撃は自動生成されたEメールに基づいて行われるようになり、検出がより困難になる。
つまり、大量の受信者に送信される単一のメールフォーマットの代わりに、生成可能なAIを使用して、潜在的な被害者それぞれに異なるメールを送信することで、サイバーセキュリティシステムが受信者に到達する前に詐欺メールを特定することがより困難になる。
ここでは、AIが生成するフィッシングメールのコーパスについて説明する。
また、AI生成したフィッシングメールを識別する自動テキスト解析機能をテストするために、さまざまな機械学習ツールも使用しています。
機械学習ツールはAIが生成したフィッシングメールを、通常のメールや人間による詐欺メールと比較して高い精度で識別できることを示している。
記述的分析を適用することで、AI生成メールと手作業による詐欺メールの具体的な違いがプロファイルされ、AI生成メールが人間生成のフィッシングメールとスタイルが異なることを示す。
したがって、自動識別ツールを利用者の警告として使用することができる。
本稿は、AIが生成したフィッシングメールのコーパスについても説明している。
AI生成のフィッシングメールを検出する機械学習の能力は奨励されているが、AI生成のフィッシングメールは通常のフィッシングメールとは異なるため、生成AIを利用した将来のフィッシング攻撃を撃退するためには、AI生成の電子メールで機械学習システムもトレーニングすることが重要である。
関連論文リスト
- Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
何十年にもわたるサイバー犯罪戦術であるフィッシングは、今日のデジタル世界において大きな脅威となっている。
本稿では,15大言語モデル (LLM) がフィッシング手法の検出に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-23T19:55:18Z) - ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection [2.3999111269325266]
本研究では,大規模な言語モデル(LLM)を用いてフィッシングメールを検出するシステムChatSpamDetectorを紹介する。
LLM解析に適したプロンプトに電子メールデータを変換することにより、電子メールがフィッシングされているか否かを高精度に判定する。
総合的なフィッシングメールデータセットを用いて評価を行い,複数のLLMおよびベースラインシステムと比較した。
論文 参考訳(メタデータ) (2024-02-28T06:28:15Z) - Prompted Contextual Vectors for Spear-Phishing Detection [45.07804966535239]
スパイアフィッシング攻撃は重大なセキュリティ上の課題を示す。
本稿では,新しい文書ベクトル化手法に基づく検出手法を提案する。
提案手法は, LLM生成したスピアフィッシングメールの識別において, 91%のF1スコアを達成する。
論文 参考訳(メタデータ) (2024-02-13T09:12:55Z) - Email Summarization to Assist Users in Phishing Identification [1.433758865948252]
サイバーフィッシング攻撃は、特定の情報や手がかりが存在する場合にのみ、トレーニングデータによってより正確で、標的になり、調整される。
この研究は、トランスフォーマーベースの機械学習を活用して、将来的な心理的トリガーを分析する。
次に、この情報をアマルゲイトし、ユーザーに提示し、電子メールが「フィシー」なのか(ii)自己学習した先進的な悪意あるパターンなのかを簡単に判断できるようにします。
論文 参考訳(メタデータ) (2022-03-24T23:03:46Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
本稿では,スパム検出のための動的深層アンサンブルモデルを提案する。
その結果、このモデルは高い精度、リコール、f1スコア、98.38%の精度を達成した。
論文 参考訳(メタデータ) (2021-10-10T17:19:37Z) - Falling for Phishing: An Empirical Investigation into People's Email
Response Behaviors [10.841507821036458]
高度なフィッシングメール検出システムにもかかわらず、人間はフィッシングメールによって騙され続けている。
我々は電子メールを読む際の人々の思考過程を調査するための実証的研究を行った。
我々は、フィッシングと合法メールの両方に対する人々の反応決定に影響を与える11の要因を特定します。
論文 参考訳(メタデータ) (2021-08-10T16:19:01Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
この調査は、組織に対する攻撃的なAIの脅威を調査する。
まず、AIが敵の方法、戦略、目標、および全体的な攻撃モデルをどのように変えるかについて議論する。
そして、文献レビューを通じて、敵が攻撃を強化するために使用できる33の攻撃的AI能力を特定します。
論文 参考訳(メタデータ) (2021-06-30T01:03:28Z) - Phishing Detection through Email Embeddings [2.099922236065961]
機械学習技術によるフィッシングメール検出の問題点は文献で広く議論されている。
本稿では,電子メールの埋め込みによってこれらの手がかりが捉えられるか無視されるかを調べるために,同様の指標を用いたフィッシングと正当性メールのセットを構築した。
以上の結果から,eメール埋め込み手法は,メールをフィッシングあるいは正当に分類するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-12-28T21:16:41Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
ディープラーニングの時代、ユーザは、サードパーティの機械学習ツールを使用して、ディープニューラルネットワーク(DNN)分類器をトレーニングすることが多い。
情報埋め込み攻撃では、攻撃者は悪意のあるサードパーティの機械学習ツールを提供する。
本研究では,一般的なポストプロセッシング手法に対して検証可能で堅牢な情報埋め込み攻撃を設計することを目的とする。
論文 参考訳(メタデータ) (2020-10-26T17:42:42Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
フィッシング攻撃は、2012年以降、サイバー攻撃の91%以上を突破し、オンライン詐欺で最も使われているテクニックとなっている。
本研究は, フィッシングとスピア・フィッシングによる攻撃が, 結果を大きくする5つのステップを通じて, フィッシングとスピア・フィッシングによる攻撃の実施方法についてレビューした。
論文 参考訳(メタデータ) (2020-05-31T18:10:09Z) - Learning with Weak Supervision for Email Intent Detection [56.71599262462638]
本稿では,メールの意図を検出するために,ユーザアクションを弱い監視源として活用することを提案する。
メール意図識別のためのエンドツーエンドの堅牢なディープニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2020-05-26T23:41:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。