GenMapping: Unleashing the Potential of Inverse Perspective Mapping for Robust Online HD Map Construction
- URL: http://arxiv.org/abs/2409.08688v1
- Date: Fri, 13 Sep 2024 10:15:28 GMT
- Title: GenMapping: Unleashing the Potential of Inverse Perspective Mapping for Robust Online HD Map Construction
- Authors: Siyu Li, Kailun Yang, Hao Shi, Song Wang, You Yao, Zhiyong Li,
- Abstract summary: We have designed a universal map generation framework, GenMapping.
The framework is established with a triadic synergy architecture, including principal and dual auxiliary branches.
A thorough array of experimental results shows that the proposed model surpasses current state-of-the-art methods in both semantic mapping and vectorized mapping, while also maintaining a rapid inference speed.
- Score: 20.1127163541618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online High-Definition (HD) maps have emerged as the preferred option for autonomous driving, overshadowing the counterpart offline HD maps due to flexible update capability and lower maintenance costs. However, contemporary online HD map models embed parameters of visual sensors into training, resulting in a significant decrease in generalization performance when applied to visual sensors with different parameters. Inspired by the inherent potential of Inverse Perspective Mapping (IPM), where camera parameters are decoupled from the training process, we have designed a universal map generation framework, GenMapping. The framework is established with a triadic synergy architecture, including principal and dual auxiliary branches. When faced with a coarse road image with local distortion translated via IPM, the principal branch learns robust global features under the state space models. The two auxiliary branches are a dense perspective branch and a sparse prior branch. The former exploits the correlation information between static and moving objects, whereas the latter introduces the prior knowledge of OpenStreetMap (OSM). The triple-enhanced merging module is crafted to synergistically integrate the unique spatial features from all three branches. To further improve generalization capabilities, a Cross-View Map Learning (CVML) scheme is leveraged to realize joint learning within the common space. Additionally, a Bidirectional Data Augmentation (BiDA) module is introduced to mitigate reliance on datasets concurrently. A thorough array of experimental results shows that the proposed model surpasses current state-of-the-art methods in both semantic mapping and vectorized mapping, while also maintaining a rapid inference speed. The source code will be publicly available at https://github.com/lynn-yu/GenMapping.
Related papers
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
We propose to train a perception model to "see" standard definition maps (SDMaps)
We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information.
Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology.
arXiv Detail & Related papers (2024-11-22T06:13:42Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
High-Definition Maps (HD maps) are essential for the precise navigation and decision-making of autonomous vehicles.
The online construction of HD maps using on-board sensors has emerged as a promising solution.
This paper proposes the PriorDrive framework to address these limitations by harnessing the power of prior maps.
arXiv Detail & Related papers (2024-09-09T06:17:46Z) - Enhancing Vectorized Map Perception with Historical Rasterized Maps [37.48510990922406]
We propose HRMapNet, leveraging a low-cost Historical Rasterized Map to enhance online vectorized map perception.
The historicalized map can be easily constructed from past predicted vectorized results and provides valuable complementary information.
HRMapNet can be integrated with most online vectorized map perception methods.
arXiv Detail & Related papers (2024-09-01T05:22:33Z) - DTCLMapper: Dual Temporal Consistent Learning for Vectorized HD Map Construction [20.6143278960295]
This paper focuses on temporal instance consistency and temporal map consistency learning.
DTCLMapper is a dual-stream temporal consistency learning module that combines instance embedding with geometry maps.
Experiments on well-recognized benchmarks indicate that the proposed DTCLMapper achieves state-of-the-art performance in vectorized mapping tasks.
arXiv Detail & Related papers (2024-05-09T02:58:55Z) - ADMap: Anti-disturbance framework for reconstructing online vectorized
HD map [9.218463154577616]
This paper proposes the Anti-disturbance Map reconstruction framework (ADMap)
To mitigate point-order jitter, the framework consists of three modules: Multi-Scale Perception Neck, Instance Interactive Attention (IIA), and Vector Direction Difference Loss (VDDL)
arXiv Detail & Related papers (2024-01-24T01:37:27Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
This paper presents an improved DETR detector that maintains a "plain" nature.
It uses a single-scale feature map and global cross-attention calculations without specific locality constraints.
We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints.
arXiv Detail & Related papers (2023-08-03T17:59:04Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
We introduce a newization-based evaluation metric, which has superior sensitivity and is better suited to real-world autonomous driving scenarios.
We also propose MapVR (Map Vectorization via Rasterization), a novel framework that applies differentiableization to preciseized outputs and then performs geometry-aware supervision on HD maps.
arXiv Detail & Related papers (2023-06-18T08:51:14Z) - Neural Map Prior for Autonomous Driving [17.198729798817094]
High-definition (HD) semantic maps are crucial in enabling autonomous vehicles to navigate urban environments.
Traditional method of creating offline HD maps involves labor-intensive manual annotation processes.
Recent studies have proposed an alternative approach that generates local maps using online sensor observations.
In this study, we propose Neural Map Prior (NMP), a neural representation of global maps.
arXiv Detail & Related papers (2023-04-17T17:58:40Z) - ASH: A Modern Framework for Parallel Spatial Hashing in 3D Perception [91.24236600199542]
ASH is a modern and high-performance framework for parallel spatial hashing on GPU.
ASH achieves higher performance, supports richer functionality, and requires fewer lines of code.
ASH and its example applications are open sourced in Open3D.
arXiv Detail & Related papers (2021-10-01T16:25:40Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HD maps are maps with precise definitions of road lanes with rich semantics of the traffic rules.
There are only a small amount of real-world road topologies and geometries, which significantly limits our ability to test out the self-driving stack.
We propose HDMapGen, a hierarchical graph generation model capable of producing high-quality and diverse HD maps.
arXiv Detail & Related papers (2021-06-28T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.