論文の概要: Can We Use Large Language Models to Fill Relevance Judgment Holes?
- arxiv url: http://arxiv.org/abs/2405.05600v1
- Date: Thu, 9 May 2024 07:39:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 14:02:33.616378
- Title: Can We Use Large Language Models to Fill Relevance Judgment Holes?
- Title(参考訳): 関連判断穴を埋めるために大きな言語モデルが使えるか?
- Authors: Zahra Abbasiantaeb, Chuan Meng, Leif Azzopardi, Mohammad Aliannejadi,
- Abstract要約: ホールを埋めるためにLarge Language Models(LLM)を利用することで、既存のテストコレクションを拡張するための最初のステップを取ります。
人間+自動判断を用いた場合, 相関関係は著しく低くなる。
- 参考スコア(独自算出の注目度): 9.208308067952155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incomplete relevance judgments limit the re-usability of test collections. When new systems are compared against previous systems used to build the pool of judged documents, they often do so at a disadvantage due to the ``holes'' in test collection (i.e., pockets of un-assessed documents returned by the new system). In this paper, we take initial steps towards extending existing test collections by employing Large Language Models (LLM) to fill the holes by leveraging and grounding the method using existing human judgments. We explore this problem in the context of Conversational Search using TREC iKAT, where information needs are highly dynamic and the responses (and, the results retrieved) are much more varied (leaving bigger holes). While previous work has shown that automatic judgments from LLMs result in highly correlated rankings, we find substantially lower correlates when human plus automatic judgments are used (regardless of LLM, one/two/few shot, or fine-tuned). We further find that, depending on the LLM employed, new runs will be highly favored (or penalized), and this effect is magnified proportionally to the size of the holes. Instead, one should generate the LLM annotations on the whole document pool to achieve more consistent rankings with human-generated labels. Future work is required to prompt engineering and fine-tuning LLMs to reflect and represent the human annotations, in order to ground and align the models, such that they are more fit for purpose.
- Abstract(参考訳): 不完全関連判断は、テストコレクションの再使用を制限します。
判断された文書のプールを構築するのに用いられた以前のシステムと比較すると、テストコレクションの '`holes'' (すなわち、新しいシステムによって返却された未評価文書のポケット)が原因でしばしば不利になる。
本稿では,Large Language Models (LLM) を用いて,既存の人的判断による手法の活用と基礎化により,既存のテストコレクションを拡張するための最初のステップについて述べる。
TREC iKAT を用いた会話探索の文脈において,情報要求が高度に動的であり,応答(および得られた結果)はより多様である(より大きな穴を埋める)。
過去の研究では、LLMからの自動判定は高い相関付けのランキングをもたらすことが示されているが、人間+自動判定が使われた場合(LLM、1/2/2ショット、微調整)は、相関が著しく低いことが示されている。
さらに,LLMによっては,新しいランニングが好まれる(あるいはペナル化される)こと,また,この効果がホールの大きさに比例して拡大されることが確認された。
代わりに、人間が生成したラベルとより一貫性のあるランキングを達成するために、ドキュメントプール全体にLCMアノテーションを生成する必要がある。
将来の作業は、人間のアノテーションを反映し、表現するためにエンジニアリングと微調整のLLMを推し進めるために必要である。
関連論文リスト
- Re-Ranking Step by Step: Investigating Pre-Filtering for Re-Ranking with Large Language Models [5.0490573482829335]
大規模言語モデル(LLM)は、さまざまなゼロショット機能を備えた多種多様な自然言語処理タスクに革命をもたらしている。
本稿では、情報検索(IR)における通過前の事前フィルタリングステップの使用について検討する。
実験の結果, この事前フィルタリングにより, LLMは再ランクタスクにおいて, 性能が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-06-26T20:12:24Z) - Efficient Document Ranking with Learnable Late Interactions [73.41976017860006]
クロスエンコーダ(CE)とデュアルエンコーダ(DE)モデルは,情報検索におけるクエリドキュメント関連性の2つの基本的なアプローチである。
関連性を予測するため、CEモデルは共同クエリドキュメントの埋め込みを使用し、DEモデルは分解クエリとドキュメントの埋め込みを維持している。
近年、DEM構造と軽量スコアラを用いて、より好ましいレイテンシ品質のトレードオフを実現するために、遅延相互作用モデルが提案されている。
論文 参考訳(メタデータ) (2024-06-25T22:50:48Z) - WikiContradict: A Benchmark for Evaluating LLMs on Real-World Knowledge Conflicts from Wikipedia [59.96425443250666]
Retrieval-augmented Generation (RAG) は,大規模言語モデル(LLM)の限界を緩和する,有望なソリューションとして登場した。
本研究では,ウィキペディアからの矛盾文に基づく質問に対するLLM生成回答の総合評価を行う。
我々は、単一のパスを持つRAGと2つの矛盾するパスを持つRAGを含む、様々なQAシナリオ下で、クローズドおよびオープンソース両方のLSMをベンチマークする。
論文 参考訳(メタデータ) (2024-06-19T20:13:42Z) - CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation [76.31621715032558]
グラウンデッドジェネレーションは、言語モデル(LM)に、より信頼性が高く説明可能な応答を生成する能力を持たせることを目的としている。
本稿では,新しい検証フレームワークであるCaLMを紹介する。
我々のフレームワークは、より少ないパラメトリックメモリに依存する小さなLMを有効活用し、より大きなLMの出力を検証する。
論文 参考訳(メタデータ) (2024-06-08T06:04:55Z) - LLMAuditor: A Framework for Auditing Large Language Models Using Human-in-the-Loop [7.77005079649294]
有効な方法は、同じ質問の異なるバージョンを使って、大きな言語モデルを探索することである。
この監査方法を大規模に運用するには、これらのプローブを確実かつ自動的に作成するためのアプローチが必要である。
我々はLLMAuditorフレームワークを提案し、異なるLLMとHIL(Human-in-the-loop)を併用する。
このアプローチは、検証性と透明性を提供すると同時に、同じLLMへの円形依存を回避する。
論文 参考訳(メタデータ) (2024-02-14T17:49:31Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
本稿では,2つのタスクを同時に実行可能なRe rank-Truncation joint model(GenRT)を提案する。
GenRTは、エンコーダ-デコーダアーキテクチャに基づく生成パラダイムによるリランクとトランケーションを統合している。
提案手法は,Web検索および検索拡張LLMにおけるリランクタスクとトラルケーションタスクの両方においてSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-02-05T06:52:53Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z) - Enabling Large Language Models to Generate Text with Citations [37.64884969997378]
大規模言語モデル (LLM) は情報検索のツールとして広く使われている。
我々の目的は、LLMが引用文を生成できるようにし、その事実の正しさと妥当性を向上させることである。
自動LLMのCitation Evaluationのための最初のベンチマークであるALCEを提案する。
論文 参考訳(メタデータ) (2023-05-24T01:53:49Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
抽象的な要約のための自動評価器として,大規模言語モデル(LLM)の安定性と信頼性について検討する。
また、ChatGPTとGPT-4は、一般的に使われている自動測定値よりも優れていますが、人間の代替品として準備ができていません。
論文 参考訳(メタデータ) (2023-05-22T14:58:13Z) - Automatic Evaluation of Attribution by Large Language Models [24.443271739599194]
大規模言語モデル(LLM)による属性の自動評価について検討する。
まず、異なる種類の属性エラーを定義し、次に自動評価のための2つのアプローチを検討する。
生成検索エンジンNew Bingから12ドメインをカバーする一連のテスト例を手作業でキュレートする。
論文 参考訳(メタデータ) (2023-05-10T16:58:33Z) - Characterizing Attribution and Fluency Tradeoffs for Retrieval-Augmented
Large Language Models [6.425088990363101]
本研究では, 大規模言語モデルにおけるフラレンシと帰属の関係について検討した。
より大きなモデルは、流布と帰属の両方において、より優れた結果をもたらす傾向があることを示す。
そこで本研究では,より小さなモデルで大きなモデルとのギャップを埋めることと,トップk検索のメリットを両立できるレシピを提案する。
論文 参考訳(メタデータ) (2023-02-11T02:43:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。