SubGDiff: A Subgraph Diffusion Model to Improve Molecular Representation Learning
- URL: http://arxiv.org/abs/2405.05665v1
- Date: Thu, 9 May 2024 10:37:33 GMT
- Title: SubGDiff: A Subgraph Diffusion Model to Improve Molecular Representation Learning
- Authors: Jiying Zhang, Zijing Liu, Yu Wang, Yu Li,
- Abstract summary: We propose a novel diffusion model termed SubGDiff for involving the molecular subgraph information in diffusion.
SubGDiff adopts three vital techniques: subgraph prediction, expectation state, and k-step same subgraph diffusion.
Experimentally, extensive downstream tasks demonstrate the superior performance of our approach.
- Score: 14.338345772161102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular representation learning has shown great success in advancing AI-based drug discovery. The core of many recent works is based on the fact that the 3D geometric structure of molecules provides essential information about their physical and chemical characteristics. Recently, denoising diffusion probabilistic models have achieved impressive performance in 3D molecular representation learning. However, most existing molecular diffusion models treat each atom as an independent entity, overlooking the dependency among atoms within the molecular substructures. This paper introduces a novel approach that enhances molecular representation learning by incorporating substructural information within the diffusion process. We propose a novel diffusion model termed SubGDiff for involving the molecular subgraph information in diffusion. Specifically, SubGDiff adopts three vital techniques: i) subgraph prediction, ii) expectation state, and iii) k-step same subgraph diffusion, to enhance the perception of molecular substructure in the denoising network. Experimentally, extensive downstream tasks demonstrate the superior performance of our approach. The code is available at https://github.com/youjibiying/SubGDiff.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Diffusion Models in $\textit{De Novo}$ Drug Design [0.0]
Diffusion models have emerged as powerful tools for molecular generation, particularly in the context of 3D molecular structures.
This review focuses on the technical implementation of diffusion models tailored for 3D molecular generation.
arXiv Detail & Related papers (2024-06-07T06:34:13Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - Geometric-Facilitated Denoising Diffusion Model for 3D Molecule Generation [32.464905769094536]
Existing diffusion-based generative methods on de novo 3D molecule generation face two major challenges.
We introduce a Dual-Track Transformer Network (DTN) to fully excevate global spatial relationships and learn high quality representations.
As for the second challenge, we design Geometric-Facilitated Loss (GFLoss) which intervenes the formation of bonds during the training period, instead of directly embedding edges into the latent space.
arXiv Detail & Related papers (2024-01-05T07:29:21Z) - Accelerating Inference in Molecular Diffusion Models with Latent Representations of Protein Structure [0.0]
Diffusion generative models operate directly on 3D molecular structures.
We present a novel GNN-based architecture for learning latent representations of molecular structure.
Our model achieves comparable performance to one with an all-atom protein representation while exhibiting a 3-fold reduction in inference time.
arXiv Detail & Related papers (2023-11-22T15:32:31Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.