論文の概要: Imprecise Multi-Armed Bandits
- arxiv url: http://arxiv.org/abs/2405.05673v1
- Date: Thu, 9 May 2024 10:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 13:42:37.607543
- Title: Imprecise Multi-Armed Bandits
- Title(参考訳): 不正確なマルチアーマッドバンド
- Authors: Vanessa Kosoy,
- Abstract要約: そこで本研究では,各アームが,結果空間上の固定された未知の干潟と結びついている,新しいマルチアーム・バンディット・フレームワークを提案する。
次に、これらのクレダル集合によって定義される下述の前提に対応する後悔の概念を定義する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel multi-armed bandit framework, where each arm is associated with a fixed unknown credal set over the space of outcomes (which can be richer than just the reward). The arm-to-credal-set correspondence comes from a known class of hypotheses. We then define a notion of regret corresponding to the lower prevision defined by these credal sets. Equivalently, the setting can be regarded as a two-player zero-sum game, where, on each round, the agent chooses an arm and the adversary chooses the distribution over outcomes from a set of options associated with this arm. The regret is defined with respect to the value of game. For certain natural hypothesis classes, loosely analgous to stochastic linear bandits (which are a special case of the resulting setting), we propose an algorithm and prove a corresponding upper bound on regret. We also prove lower bounds on regret for particular special cases.
- Abstract(参考訳): そこで本研究では,各アームに,結果空間上の不確定な不確定なクレダルセットを関連付ける,新しいマルチアーム・バンディット・フレームワークを提案する。
アーム・トゥ・クレダル・セットの対応は既知の仮説のクラスに由来する。
次に、これらのクレダル集合によって定義される下述の前提に対応する後悔の概念を定義する。
同様に、この設定を2プレーヤゼロサムゲームとみなすことができ、各ラウンドにおいて、エージェントがアームを選択し、相手が、このアームに関連する一連のオプションから結果の分布を選択する。
後悔はゲームの価値に関して定義される。
ある種の自然仮説クラスでは、確率線型包帯(これは結果の設定の特別な場合である)にゆるやかにアナルゴスを与えるため、アルゴリズムを提案し、それに対応する上界を後悔で証明する。
また、特定の特別事例に対する後悔の限界も低く証明する。
関連論文リスト
- Bridging Rested and Restless Bandits with Graph-Triggering: Rising and Rotting [67.1631453378926]
Graph-Triggered Banditsは、安静と安静のバンディットを一般化するフレームワークである。
本研究は,2種類の単調包帯に焦点をあてる: 立ち上がり, 腕の期待される報酬が増加する, 引き金の数が増える, 回転する, 反対の行動が起こる。
論文 参考訳(メタデータ) (2024-09-09T18:23:07Z) - Best Arm Identification in Bandits with Limited Precision Sampling [14.011731120150124]
学習者が腕選択の精度に限界がある多腕バンディット問題の変種における最適な腕識別について検討する。
非特異な最適アロケーションを処理するために,修正されたトラッキングベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-10T12:07:48Z) - Best Arm Identification in Restless Markov Multi-Armed Bandits [85.55466536537293]
マルチアームバンディット環境における最適な腕を特定することの問題点について検討する。
決定エンティティは、上限誤差確率を条件として、ベストアームのインデックスをできるだけ早く見つけることを希望する。
このポリシーは、$R$に依存する上限を達成し、$Rtoinfty$として単調に増加しないことを示す。
論文 参考訳(メタデータ) (2022-03-29T04:58:04Z) - The Countable-armed Bandit with Vanishing Arms [8.099977107670918]
我々は、数え切れないほど多くの腕を有限個の「型」に分割したバンドイット問題を考える。
非定常分布は、腕の個体群における各腕型の相対的な存在量を支配しており、いわゆる「腕貯水池」である。
論文 参考訳(メタデータ) (2021-10-23T02:47:55Z) - Combinatorial Blocking Bandits with Stochastic Delays [33.65025386998747]
最近の研究は、各腕の報酬が最後の引き抜きから経過した時間の特別な機能であるマルチアームバンディット問題の自然変化を考察している。
本研究では, 上記のモデルを2つの方向に拡張する。 (i) 各ラウンドで複数の腕を演奏できる汎用的な設定を, 実現可能性制約の下で検討する。
我々は、利用可能な(非ブロック化された)アームの中で、常に最大で期待される報酬を再生する自然な欲求部分集合の近似を厳密に分析する。
腕の期待報酬が不明な場合、上記のアルゴリズムを盗賊に適応させる。
論文 参考訳(メタデータ) (2021-05-22T02:46:04Z) - Online Model Selection: a Rested Bandit Formulation [49.69377391589057]
静止したバンディット設定における最善のアーム識別問題を紹介し,解析する。
我々は、この問題の後悔の新しい概念を定義し、ゲームの終わりに最小の期待損失を持つ腕を常に再生するポリシーと比較します。
最近のバンディット文献における既知のモデル選択の試みとは異なり、アルゴリズムは問題の特定の構造を利用して、予想される損失関数の未知のパラメータを学習する。
論文 参考訳(メタデータ) (2020-12-07T08:23:08Z) - Multitask Bandit Learning Through Heterogeneous Feedback Aggregation [35.923544685900055]
我々は,この問題を,一組のプレイヤーが一組のアームと同時に相互作用する,$epsilon$-multi-player multi-armed bandit問題として定式化する。
我々は、異なるプレイヤーが収集した報酬を適応的に集約する高信頼な有界アルゴリズム、RobostAgg$(epsilon)$を開発する。
論文 参考訳(メタデータ) (2020-10-29T07:13:28Z) - A Novel Confidence-Based Algorithm for Structured Bandits [129.30402124516507]
両腕の報酬が他の腕の報酬と相関する可能性のある有限腕包帯について検討した。
本稿では、与えられた構造を利用して、真のバンディット問題のパラメータに対する信頼セットを構築する新しい位相アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-23T19:52:44Z) - Robustness Guarantees for Mode Estimation with an Application to Bandits [131.21717367564963]
平均ではなく報酬分布のモードを値とするマルチアームバンディットの理論を導入する。
我々は,我々のアルゴリズムが逆雑音列による腕の摂動に頑健であることを示すシミュレーションで示す。
論文 参考訳(メタデータ) (2020-03-05T21:29:27Z) - Tight Lower Bounds for Combinatorial Multi-Armed Bandits [72.56064196252498]
Combinatorial Multi-Armed Bandit 問題は、エージェントが各ラウンドで一組の腕を選択する、シーケンシャルな意思決定問題である。
最近提案されたGini重み付き滑らか度パラメータが単調報酬関数の下限を決定することを示す。
論文 参考訳(メタデータ) (2020-02-13T08:53:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。