論文の概要: Aequitas Flow: Streamlining Fair ML Experimentation
- arxiv url: http://arxiv.org/abs/2405.05809v1
- Date: Thu, 9 May 2024 14:48:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 13:02:50.709296
- Title: Aequitas Flow: Streamlining Fair ML Experimentation
- Title(参考訳): Aequitas Flow: 公正なML実験の合理化
- Authors: Sérgio Jesus, Pedro Saleiro, Inês Oliveira e Silva, Beatriz M. Jorge, Rita P. Ribeiro, João Gama, Pedro Bizarro, Rayid Ghani,
- Abstract要約: Aequitas Flowは、PythonでエンドツーエンドのFair Machine Learning(ML)実験を行うためのオープンソースのフレームワークである。
公平性を意識したモデルトレーニング、ハイパーパラメータ最適化、評価のためのパイプラインを提供する。
公正なMLプラクティスの開発を促進することで、Aequitas Flowは、AIテクノロジにおけるこれらの概念の採用を強化することを目指している。
- 参考スコア(独自算出の注目度): 13.085015139700245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aequitas Flow is an open-source framework for end-to-end Fair Machine Learning (ML) experimentation in Python. This package fills the existing integration gaps in other Fair ML packages of complete and accessible experimentation. It provides a pipeline for fairness-aware model training, hyperparameter optimization, and evaluation, enabling rapid and simple experiments and result analysis. Aimed at ML practitioners and researchers, the framework offers implementations of methods, datasets, metrics, and standard interfaces for these components to improve extensibility. By facilitating the development of fair ML practices, Aequitas Flow seeks to enhance the adoption of these concepts in AI technologies.
- Abstract(参考訳): Aequitas Flowは、PythonでエンドツーエンドのFair Machine Learning(ML)実験を行うためのオープンソースのフレームワークである。
このパッケージは、他のFair MLパッケージにおける、完全かつアクセス可能な実験の既存の統合ギャップを埋める。
公平性を意識したモデルトレーニング、ハイパーパラメータ最適化、評価のためのパイプラインを提供し、迅速かつ単純な実験と結果分析を可能にする。
MLの実践者と研究者を対象としたこのフレームワークは、拡張性を改善するために、メソッド、データセット、メトリクス、標準インターフェースの実装を提供する。
公正なMLプラクティスの開発を促進することで、Aequitas Flowは、AIテクノロジにおけるこれらの概念の採用を強化することを目指している。
関連論文リスト
- UltraEval: A Lightweight Platform for Flexible and Comprehensive Evaluation for LLMs [74.1976921342982]
本稿では,ユーザフレンドリな評価フレームワークであるUltraEvalを紹介し,その軽量性,包括性,モジュール性,効率性を特徴とする。
その結果のコンポーザビリティにより、統一された評価ワークフロー内で、さまざまなモデル、タスク、プロンプト、ベンチマーク、メトリクスを自由に組み合わせることができる。
論文 参考訳(メタデータ) (2024-04-11T09:17:12Z) - Optimal Flow Matching: Learning Straight Trajectories in Just One Step [89.37027530300617]
我々は,新しい最適フローマッチング手法を開発し,理論的に正当化する。
これは2次輸送のための直列のOT変位をFMの1ステップで回復することを可能にする。
提案手法の主な考え方は,凸関数によってパラメータ化されるFMのベクトル場の利用である。
論文 参考訳(メタデータ) (2024-03-19T19:44:54Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
大規模な現実世界のAPIを制御するために設計された新しいツール呼び出しパイプラインを導入します。
このパイプラインは人間のタスク解決プロセスを反映し、複雑な実際のユーザクエリに対処する。
ToolBenchベンチマークにおけるSum2Actパイプラインの実証的な評価は、大幅なパフォーマンス向上を示している。
論文 参考訳(メタデータ) (2024-02-28T08:42:23Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
MLXPはPythonをベースとした,オープンソースの,シンプルで,軽量な実験管理ツールである。
実験プロセスを最小限のオーバーヘッドで合理化し、高いレベルの実践的オーバーヘッドを確保します。
論文 参考訳(メタデータ) (2024-02-21T14:22:20Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiEは、大規模な言語モデルの協調トレーニングを容易にする効率的なライブラリである。
モジュール設計と包括的な機能により、CoLLiEは効率性、使いやすさ、カスタマイズのバランスのとれたブレンドを提供する。
論文 参考訳(メタデータ) (2023-12-01T08:02:16Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z) - Reasonable Scale Machine Learning with Open-Source Metaflow [2.637746074346334]
既存のツールを再購入しても、現在の生産性の問題は解決しない、と私たちは主張します。
私たちは、データ実践者の生産性を高めるために明示的に設計された、MLプロジェクトのためのオープンソースのフレームワークであるMetaflowを紹介します。
論文 参考訳(メタデータ) (2023-03-21T11:28:09Z) - Active Learning Framework to Automate NetworkTraffic Classification [0.0]
この話題に対処するための新しいActiveLearning Framework(ALF)を提案する。
ALFは、アクティブラーニングループのデプロイと、データセットとMLモデルを継続的に進化させるALFインスタンスのメンテナンスに使用できるコンポーネントを提供する。
その結果,高速(100Gb/s)ネットワークのIPフローに基づく解析が可能となった。
論文 参考訳(メタデータ) (2022-10-26T10:15:18Z) - Machine learning enabling high-throughput and remote operations at
large-scale user facilities [0.0]
機械学習(ML)手法は、大規模なデータセットをリアルタイムで処理し、解釈するために定期的に開発されている。
我々は、National Synchrotron Light Source II (NSLS-II)において、複数のビームラインでのオンザフライ解析のための様々なアーチティパルMLモデルを実証した。
論文 参考訳(メタデータ) (2022-01-09T17:43:03Z) - Demystifying a Dark Art: Understanding Real-World Machine Learning Model
Development [2.422369741135428]
機械学習の追跡と共有のためのオープンソースのプラットフォームOpenMLで、ユーザ生成475万以上を分析します。
イテレーションを繰り返すと、ユーザが手動、自動化、あるいは混合のアプローチを採用することがよくあります。
論文 参考訳(メタデータ) (2020-05-04T14:33:39Z) - MLModelScope: A Distributed Platform for Model Evaluation and
Benchmarking at Scale [32.62513495487506]
機械学習(ML)とディープラーニング(DL)のイノベーションは急速に導入され、研究者はそれらを分析して研究することが難しくなっている。
ML/DL評価の標準化と提供方法の欠如とともに、イノベーションを評価するための複雑な手続きは、コミュニティにとって大きな「痛点」である。
本稿では,MLModelScopeを提案する。MLModelScopeは,フレームワークやハードウェアに依存しない,カスタマイズ可能な設計で,反復可能で公平でスケーラブルなモデル評価とベンチマークを可能にする。
論文 参考訳(メタデータ) (2020-02-19T17:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。