Theoretical Guarantees of Data Augmented Last Layer Retraining Methods
- URL: http://arxiv.org/abs/2405.05934v1
- Date: Thu, 9 May 2024 17:16:54 GMT
- Title: Theoretical Guarantees of Data Augmented Last Layer Retraining Methods
- Authors: Monica Welfert, Nathan Stromberg, Lalitha Sankar,
- Abstract summary: Linear last layer retraining strategies have been shown to achieve state-of-the-art performance for worst-group accuracy.
We present the optimal worst-group accuracy when modeling the distribution of the latent representations.
We evaluate and verify our results for both synthetic and large publicly available datasets.
- Score: 5.352699766206809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring fair predictions across many distinct subpopulations in the training data can be prohibitive for large models. Recently, simple linear last layer retraining strategies, in combination with data augmentation methods such as upweighting, downsampling and mixup, have been shown to achieve state-of-the-art performance for worst-group accuracy, which quantifies accuracy for the least prevalent subpopulation. For linear last layer retraining and the abovementioned augmentations, we present the optimal worst-group accuracy when modeling the distribution of the latent representations (input to the last layer) as Gaussian for each subpopulation. We evaluate and verify our results for both synthetic and large publicly available datasets.
Related papers
- DRoP: Distributionally Robust Pruning [11.930434318557156]
We conduct the first systematic study of the impact of data pruning on classification bias of trained models.
We propose DRoP, a distributionally robust approach to pruning and empirically demonstrate its performance on standard computer vision benchmarks.
arXiv Detail & Related papers (2024-04-08T14:55:35Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Group Distributionally Robust Dataset Distillation with Risk
Minimization [18.07189444450016]
We introduce an algorithm that combines clustering with the minimization of a risk measure on the loss to conduct DD.
We demonstrate its effective generalization and robustness across subgroups through numerical experiments.
arXiv Detail & Related papers (2024-02-07T09:03:04Z) - Ranking & Reweighting Improves Group Distributional Robustness [14.021069321266516]
We propose a ranking-based training method called Discounted Rank Upweighting (DRU) to learn models that exhibit strong OOD performance on the test data.
Results on several synthetic and real-world datasets highlight the superior ability of our group-ranking-based (akin to soft-minimax) approach in selecting and learning models that are robust to group distributional shifts.
arXiv Detail & Related papers (2023-05-09T20:37:16Z) - Throwing Away Data Improves Worst-Class Error in Imbalanced
Classification [36.91428748713018]
Class imbalances pervade classification problems, yet their treatment differs in theory and practice.
We take on the challenge of developing learning theory able to describe the worst-class error of classifiers over linearly-separable data.
arXiv Detail & Related papers (2022-05-23T23:43:18Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
arXiv Detail & Related papers (2021-11-24T06:18:32Z) - Reweighting Augmented Samples by Minimizing the Maximal Expected Loss [51.2791895511333]
We construct the maximal expected loss which is the supremum over any reweighted loss on augmented samples.
Inspired by adversarial training, we minimize this maximal expected loss and obtain a simple and interpretable closed-form solution.
The proposed method can generally be applied on top of any data augmentation methods.
arXiv Detail & Related papers (2021-03-16T09:31:04Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
We propose a new training scheme for auto-regressive sequence generative models, which is effective and stable when operating at large sample space encountered in text generation.
Our method stably outperforms Maximum Likelihood Estimation and other state-of-the-art sequence generative models in terms of both quality and diversity.
arXiv Detail & Related papers (2020-07-12T15:31:24Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.