LLMs for XAI: Future Directions for Explaining Explanations
- URL: http://arxiv.org/abs/2405.06064v1
- Date: Thu, 9 May 2024 19:17:47 GMT
- Title: LLMs for XAI: Future Directions for Explaining Explanations
- Authors: Alexandra Zytek, Sara Pidò, Kalyan Veeramachaneni,
- Abstract summary: We focus on refining explanations computed using existing XAI algorithms.
Initial experiments and user study suggest that LLMs offer a promising way to enhance the interpretability and usability of XAI.
- Score: 50.87311607612179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In response to the demand for Explainable Artificial Intelligence (XAI), we investigate the use of Large Language Models (LLMs) to transform ML explanations into natural, human-readable narratives. Rather than directly explaining ML models using LLMs, we focus on refining explanations computed using existing XAI algorithms. We outline several research directions, including defining evaluation metrics, prompt design, comparing LLM models, exploring further training methods, and integrating external data. Initial experiments and user study suggest that LLMs offer a promising way to enhance the interpretability and usability of XAI.
Related papers
- Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Integrating Explanations in Learning LTL Specifications from Demonstrations [6.070833893646998]
This paper investigates whether recent advances in Large Language Models (LLMs) can assist in translating human explanations into a format that can robustly support learning Linear Temporal Logic (LTL) from demonstrations.
We present a principled approach combining LLMs and optimization-based methods to faithfully translate human explanations and demonstrations into specifications.
arXiv Detail & Related papers (2024-04-03T17:09:00Z) - Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era [77.174117675196]
XAI is being extended towards Large Language Models (LLMs)
This paper analyzes how XAI can benefit LLMs and AI systems.
We introduce 10 strategies, introducing the key techniques for each and discussing their associated challenges.
arXiv Detail & Related papers (2024-03-13T20:25:27Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Quantitative knowledge retrieval from large language models [4.155711233354597]
Large language models (LLMs) have been extensively studied for their abilities to generate convincing natural language sequences.
This paper explores the feasibility of LLMs as a mechanism for quantitative knowledge retrieval to aid data analysis tasks.
arXiv Detail & Related papers (2024-02-12T16:32:37Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - In-Context Explainers: Harnessing LLMs for Explaining Black Box Models [28.396104334980492]
Large Language Models (LLMs) have demonstrated exceptional capabilities in complex tasks like machine translation, commonsense reasoning, and language understanding.
One of the primary reasons for the adaptability of LLMs in such diverse tasks is their in-context learning (ICL) capability, which allows them to perform well on new tasks by simply using a few task samples in the prompt.
We propose a novel framework, In-Context Explainers, comprising of three novel approaches that exploit the ICL capabilities of LLMs to explain the predictions made by other predictive models.
arXiv Detail & Related papers (2023-10-09T15:31:03Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.