論文の概要: Novel Class Discovery for Ultra-Fine-Grained Visual Categorization
- arxiv url: http://arxiv.org/abs/2405.06283v1
- Date: Fri, 10 May 2024 07:31:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 16:27:43.220531
- Title: Novel Class Discovery for Ultra-Fine-Grained Visual Categorization
- Title(参考訳): 超高次視覚分類のための新しいクラス発見
- Authors: Yu Liu, Yaqi Cai, Qi Jia, Binglin Qiu, Weimin Wang, Nan Pu,
- Abstract要約: 我々はUFG-NCD(Ultra-Fine-Grained Novel Class Discovery)と呼ばれる新しいタスクを提案する。
UFG-NCDは部分注釈データを利用して、Ultra-FGVC用のラベルなし画像の新しいカテゴリを識別する。
RAPLは様々なデータセットのベースラインを大幅に上回ることを示す。
- 参考スコア(独自算出の注目度): 8.597297356379281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultra-fine-grained visual categorization (Ultra-FGVC) aims at distinguishing highly similar sub-categories within fine-grained objects, such as different soybean cultivars. Compared to traditional fine-grained visual categorization, Ultra-FGVC encounters more hurdles due to the small inter-class and large intra-class variation. Given these challenges, relying on human annotation for Ultra-FGVC is impractical. To this end, our work introduces a novel task termed Ultra-Fine-Grained Novel Class Discovery (UFG-NCD), which leverages partially annotated data to identify new categories of unlabeled images for Ultra-FGVC. To tackle this problem, we devise a Region-Aligned Proxy Learning (RAPL) framework, which comprises a Channel-wise Region Alignment (CRA) module and a Semi-Supervised Proxy Learning (SemiPL) strategy. The CRA module is designed to extract and utilize discriminative features from local regions, facilitating knowledge transfer from labeled to unlabeled classes. Furthermore, SemiPL strengthens representation learning and knowledge transfer with proxy-guided supervised learning and proxy-guided contrastive learning. Such techniques leverage class distribution information in the embedding space, improving the mining of subtle differences between labeled and unlabeled ultra-fine-grained classes. Extensive experiments demonstrate that RAPL significantly outperforms baselines across various datasets, indicating its effectiveness in handling the challenges of UFG-NCD. Code is available at https://github.com/SSDUT-Caiyq/UFG-NCD.
- Abstract(参考訳): 超きめ細かい視覚分類 (Ultra-FGVC) は、異なる大豆品種のような細粒度オブジェクト内で非常に類似したサブカテゴリを区別することを目的としている。
従来のきめ細かい視覚分類と比較すると、Ultra-FGVCはクラス間およびクラス内の大きな変化のため、より多くのハードルに直面する。
これらの課題を考えると、Ultra-FGVCに対する人間のアノテーションに頼ることは現実的ではない。
そこで本研究では,UFG-NCD (Ultra-Fine-Grained Novel Class Discovery) と呼ばれる新しい課題を紹介した。
この問題に対処するため,チャネルワイド・リージョンアライメント(CRA)モジュールとセミスーパーバイズド・プロキシ・ラーニング(SemiPL)戦略を組み合わせたRAPL(Regional-Aligned Proxy Learning)フレームワークを考案した。
CRAモジュールは、ラベル付きクラスからラベルなしクラスへの知識伝達を容易にするため、地域から識別的特徴を抽出し、利用するために設計されている。
さらに、SemiPLは、プロキシ誘導型教師付き学習とプロキシ誘導型コントラスト学習による表現学習と知識伝達を強化する。
このような手法は埋め込み空間におけるクラス分布情報を活用し、ラベル付きクラスとラベルなしクラスの間の微妙な違いのマイニングを改善する。
大規模な実験により、RAPLは様々なデータセットでベースラインを大幅に上回っており、UFG-NCDの課題に対処する上での有効性を示している。
コードはhttps://github.com/SSDUT-Caiyq/UFG-NCDで入手できる。
関連論文リスト
- Prototypical Hash Encoding for On-the-Fly Fine-Grained Category Discovery [65.16724941038052]
カテゴリ対応プロトタイプ生成(CPG)とディスクリミカテゴリ5.3%(DCE)が提案されている。
CPGは、各カテゴリを複数のプロトタイプで表現することで、カテゴリ内の多様性を完全にキャプチャすることを可能にする。
DCEは生成されたカテゴリプロトタイプのガイダンスによってハッシュコードの識別能力を向上する。
論文 参考訳(メタデータ) (2024-10-24T23:51:40Z) - EIANet: A Novel Domain Adaptation Approach to Maximize Class Distinction with Neural Collapse Principles [15.19374752514876]
ソースフリードメイン適応(SFDA)は、ラベル付きソースドメインから未ラベルのターゲットドメインに知識を転送することを目的としている。
SFDAにおける大きな課題は、ターゲットドメインの正確な分類情報を導き出すことである。
クラスプロトタイプを分離するための新しいETF-Informed Attention Network(EIANet)を導入する。
論文 参考訳(メタデータ) (2024-07-23T05:31:05Z) - Efficient Prompt Tuning of Large Vision-Language Model for Fine-Grained
Ship Classification [62.425462136772666]
リモートセンシング(RS-FGSC)における船のきめ細かい分類は、クラス間の高い類似性とラベル付きデータの限られた可用性のために大きな課題となる。
大規模な訓練済みビジョンランゲージモデル(VLM)の最近の進歩は、少数ショット学習やゼロショット学習において印象的な能力を示している。
本研究は, 船種別分類精度を高めるために, VLMの可能性を生かしたものである。
論文 参考訳(メタデータ) (2024-03-13T05:48:58Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) は、部分的にラベル付けされたデータを自動でクラスタリングすることを目的としている。
ラベル付きデータには、ラベル付きデータの既知のカテゴリだけでなく、新しいカテゴリのインスタンスも含まれている。
GCDの効果的な方法の1つは、ラベルなしデータの識別表現を学習するために自己教師付き学習を適用することである。
本稿では,クラスタリングの精度を効果的に向上する動的概念コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-30T14:04:39Z) - Fine-grained Category Discovery under Coarse-grained supervision with
Hierarchical Weighted Self-contrastive Learning [37.6512548064269]
粗粒度監視(FCDC)下での細粒度カテゴリー発見という新たな実践シナリオについて検討する。
FCDCは、粗いラベル付きデータのみを用いて、既知のデータと異なる粒度のカテゴリにモデルを適応させ、かなりのラベル付けコストを削減できるきめ細かなカテゴリを発見することを目的としている。
本稿では,新しい重み付き自己コントラストモジュールを構築し,それを階層的に教師付き学習と組み合わせることで,階層型自己コントラストネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-14T12:06:23Z) - R2-Trans:Fine-Grained Visual Categorization with Redundancy Reduction [21.11038841356125]
細粒度視覚分類(FGVC)は、クラス内の大きな多様性と微妙なクラス間差が主な課題である類似のサブカテゴリを識別することを目的としている。
本稿では,FGVCに対する新たなアプローチを提案する。FGVCは,環境条件における部分的かつ十分な識別情報を同時に利用でき,また,対象物に対するクラストークンにおける冗長情報を圧縮することができる。
論文 参考訳(メタデータ) (2022-04-21T13:35:38Z) - A Compositional Feature Embedding and Similarity Metric for
Ultra-Fine-Grained Visual Categorization [16.843126268445726]
きめ細かい視覚分類(FGVC)は、クラス間の差異が小さいオブジェクトを分類することを目的としている。
本稿では,超微細な視覚分類のための新しい構成的特徴埋め込みと類似度指標(CECS)を提案する。
最近のベンチマーク手法を用いた2つの超FGVCデータセットと1つのFGVCデータセットの実験結果から,提案手法が最先端性能を実現することを一貫して示している。
論文 参考訳(メタデータ) (2021-09-25T15:05:25Z) - Adaptive Class Suppression Loss for Long-Tail Object Detection [49.7273558444966]
アダプティブクラス抑圧損失(ACSL:Adaptive Class Suppression Loss)を考案し,尾部カテゴリの検出性能を改善する。
当社のACSLはResNet50-FPNで5.18%と5.2%の改善を実現し,新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2021-04-02T05:12:31Z) - Adversarial Feature Hallucination Networks for Few-Shot Learning [84.31660118264514]
Adversarial Feature Hallucination Networks (AFHN) は条件付き Wasserstein Generative Adversarial Network (cWGAN) に基づいている。
合成された特徴の識別性と多様性を促進するために、2つの新規レギュレータがAFHNに組み込まれている。
論文 参考訳(メタデータ) (2020-03-30T02:43:16Z) - Fine-Grained Visual Classification via Progressive Multi-Granularity
Training of Jigsaw Patches [67.51747235117]
きめ細かい視覚分類(FGVC)は従来の分類よりもはるかに難しい。
最近の研究は主に、最も差別的な部分の発見に焦点をあてることによってこの問題に対処している。
本稿では,これらの問題に対処するための視覚的細粒度分類のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-03-08T19:27:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。