Inequivalence of stochastic and Bohmian arrival times in time-of-flight experiments
- URL: http://arxiv.org/abs/2405.06324v2
- Date: Fri, 7 Jun 2024 01:26:42 GMT
- Title: Inequivalence of stochastic and Bohmian arrival times in time-of-flight experiments
- Authors: Pascal Naidon,
- Abstract summary: Time-of-flight experiments with ultracold atoms could test different interpretations of quantum mechanics.
quantum particles follow definite but non-deterministic and non-differentiable trajectories.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by a recent prediction [Com. Phys., 6, 195 (2023)] that time-of-flight experiments with ultracold atoms could test different interpretations of quantum mechanics, this work investigates the arrival times predicted by the stochastic interpretation, whereby quantum particles follow definite but non-deterministic and non-differentiable trajectories. The distribution of arrival times is obtained from a Fokker-Planck equation, and confirmed by direct simulation of trajectories. It is found to be in general different from the distribution predicted by the Bohmian interpretation, in which quantum particles follow definite deterministic and differentiable trajectories. This result suggests that trajectory-based interpretations of quantum mechanics could be experimentally discriminated.
Related papers
- Entangled in Spacetime [0.0]
The Delayed-Choice Quantum Eraser demonstrates the relationship between quantum measurement, wave-particle duality, and the temporal ordering of observations.
By utilizing the principles of quantum superposition, entanglement, and the non-local collapse of the wave function, we seek to rationalize the counterintuitive outcomes observed in the experiment.
arXiv Detail & Related papers (2024-09-04T00:57:23Z) - Testing trajectory-based determinism via time probability distributions [44.99833362998488]
Bohmian mechanics (BM) has inherited more predictive power than quantum mechanics (QM)
We introduce a prescription for constructing a flight-time probability distribution within generic trajectory-equipped theories.
We derive probability distributions that are unreachable by QM.
arXiv Detail & Related papers (2024-04-15T11:36:38Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - A quantum trajectory analysis of singular wave functions [0.0]
The Schr"odinger equation admits smooth and finite solutions that spontaneously evolve into a singularity, even for a free particle.
We resort to the notion of quantum trajectories to reinterpret this singular behavior.
arXiv Detail & Related papers (2023-01-30T19:00:01Z) - Relativistic time-of-arrival measurements: predictions, post-selection
and causality problem [0.0]
We analyze time-of-arrival probability distributions for relativistic particles in the context of quantum field theory (QFT)
We show that QFT leads to a unique prediction, modulo post-selection, that incorporates properties of the apparatus into the initial state.
We discuss possible ways to restore causality, and we argue that this may not be possible in measurement models that involve switching the field-apparatus coupling on and off.
arXiv Detail & Related papers (2022-10-11T16:24:39Z) - Scattering Times of Quantum Particles from the Gravitational Potential,
and Equivalence Principle Violation [0.0]
Universality of motion under gravity, the equivalence principle, is violated for quantum particles.
We study time it takes for a quantum particle to scatter from the gravitational potential, and show that the scattering time acts as an indicator of the equivalence principle violation.
arXiv Detail & Related papers (2022-08-11T01:45:32Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Feynman Propagator for Interacting Electrons in the Quantum Fokker
Theory [62.997667081978825]
modification consists in adding to the Fokker action its variation generated by the infinitesimal shifts of the proper time parameters.
As a result, the proper time parameters become observable at the quantum level.
arXiv Detail & Related papers (2020-04-19T10:42:58Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.