Efficient Federated Low Rank Matrix Completion
- URL: http://arxiv.org/abs/2405.06569v2
- Date: Mon, 30 Sep 2024 21:41:12 GMT
- Title: Efficient Federated Low Rank Matrix Completion
- Authors: Ahmed Ali Abbasi, Namrata Vaswani,
- Abstract summary: We develop and analyze a solution called Alternating GD and Minimization (AltGDmin) for solving the low rank matrix completion (LRMC) problem.
Our theoretical guarantees imply that AltGDmin is the most communication-efficient solution in a federated setting.
We show how our lemmas can be used to provide an improved sample complexity guarantee for AltMin.
- Score: 18.471262688125645
- License:
- Abstract: In this work, we develop and analyze a Gradient Descent (GD) based solution, called Alternating GD and Minimization (AltGDmin), for efficiently solving the low rank matrix completion (LRMC) in a federated setting. LRMC involves recovering an $n \times q$ rank-$r$ matrix $\Xstar$ from a subset of its entries when $r \ll \min(n,q)$. Our theoretical guarantees (iteration and sample complexity bounds) imply that AltGDmin is the most communication-efficient solution in a federated setting, is one of the fastest, and has the second best sample complexity among all iterative solutions to LRMC. In addition, we also prove two important corollaries. (a) We provide a guarantee for AltGDmin for solving the noisy LRMC problem. (b) We show how our lemmas can be used to provide an improved sample complexity guarantee for AltMin, which is the fastest centralized solution.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - PRECISION: Decentralized Constrained Min-Max Learning with Low
Communication and Sample Complexities [25.153506493249854]
We show an adaptive multi-agent learning technique for min-max optimization problems.
We also propose an algorithm called PRECISION that enjoys a reduction in the number of iterations.
arXiv Detail & Related papers (2023-03-05T00:26:10Z) - Optimal Sample Complexity of Reinforcement Learning for Mixing
Discounted Markov Decision Processes [1.0445957451908694]
We consider the optimal sample complexity theory for maximizing the infinite horizon discounted reward in a Markov decision process (MDP)
In many applications of interest, the optimal policy (or all policies) induces mixing.
Our analysis is grounded in regeneration-type ideas, which we believe are of independent interest, as they can be used to study RL problems for general state space MDPs.
arXiv Detail & Related papers (2023-02-15T05:43:17Z) - Near-Optimal Sample Complexity Bounds for Constrained MDPs [25.509556551558834]
We provide minimax upper and lower bounds on the sample complexity for learning near-optimal policies in a discounted CMDP.
We show that learning CMDPs is as easy as MDPs when small constraint violations are allowed, but inherently more difficult when we demand zero constraint violation.
arXiv Detail & Related papers (2022-06-13T15:58:14Z) - Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov
Decision Processes [61.11090361892306]
Reward-free reinforcement learning (RL) considers the setting where the agent does not have access to a reward function during exploration.
We show that this separation does not exist in the setting of linear MDPs.
We develop a computationally efficient algorithm for reward-free RL in a $d$-dimensional linear MDP.
arXiv Detail & Related papers (2022-01-26T22:09:59Z) - Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization
Approach [6.952045528182883]
We study the Sparse Plus Low-Rank decomposition problem ( SLR )
SLR is a fundamental problem in Operations Research and Machine Learning.
We introduce a novel formulation for SLR that directly models its underlying discreteness.
arXiv Detail & Related papers (2021-09-26T20:49:16Z) - A Wasserstein Minimax Framework for Mixed Linear Regression [69.40394595795544]
Multi-modal distributions are commonly used to model clustered data in learning tasks.
We propose an optimal transport-based framework for Mixed Linear Regression problems.
arXiv Detail & Related papers (2021-06-14T16:03:51Z) - Towards Tight Bounds on the Sample Complexity of Average-reward MDPs [39.01663172393174]
We find an optimal policy of an infinite-horizon average-reward Markov decision process given access to a generative model.
We provide an algorithm that solves the problem using $widetildeO(t_mathrmmix epsilon-3)$ (oblivious) samples per state-action pair.
arXiv Detail & Related papers (2021-06-13T17:18:11Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
We show that model-based MARL achieves a sample complexity of $tilde O(|S||B|(gamma)-3epsilon-2)$ for finding the Nash equilibrium (NE) value up to some $epsilon$ error.
We also show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge.
arXiv Detail & Related papers (2020-07-15T03:25:24Z) - Nonconvex Zeroth-Order Stochastic ADMM Methods with Lower Function Query
Complexity [109.54166127479093]
Zeroth-order (a.k.a, derivative-free) methods are a class of effective optimization methods for solving machine learning problems.
In this paper, we propose a class faster faster zerothorder alternating gradient method multipliers (MMADMM) to solve the non finitesum problems.
We show that ZOMMAD methods can achieve a lower function $O(frac13nfrac1)$ for finding an $epsilon$-stationary point.
At the same time, we propose a class faster zerothorder online ADM methods (M
arXiv Detail & Related papers (2019-07-30T02:21:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.