論文の概要: Large Language Models as Planning Domain Generators
- arxiv url: http://arxiv.org/abs/2405.06650v1
- Date: Tue, 2 Apr 2024 19:39:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 10:40:42.709345
- Title: Large Language Models as Planning Domain Generators
- Title(参考訳): プランニングドメインジェネレータとしての大規模言語モデル
- Authors: James Oswald, Kavitha Srinivas, Harsha Kokel, Junkyu Lee, Michael Katz, Shirin Sohrabi,
- Abstract要約: 大規模言語モデル(LLM)は、単純なテキスト記述から計画的なドメインモデルを生成するために使用できる。
LLMは、自然言語記述から正しい計画領域を生成するのに適度な習熟度を示す。
- 参考スコア(独自算出の注目度): 21.61328475841776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing domain models is one of the few remaining places that require manual human labor in AI planning. Thus, in order to make planning more accessible, it is desirable to automate the process of domain model generation. To this end, we investigate if large language models (LLMs) can be used to generate planning domain models from simple textual descriptions. Specifically, we introduce a framework for automated evaluation of LLM-generated domains by comparing the sets of plans for domain instances. Finally, we perform an empirical analysis of 7 large language models, including coding and chat models across 9 different planning domains, and under three classes of natural language domain descriptions. Our results indicate that LLMs, particularly those with high parameter counts, exhibit a moderate level of proficiency in generating correct planning domains from natural language descriptions. Our code is available at https://github.com/IBM/NL2PDDL.
- Abstract(参考訳): ドメインモデルの開発は、AI計画において人手作業を必要とする数少ない場所の1つである。
したがって、プランニングをより使いやすくするためには、ドメインモデル生成のプロセスを自動化することが望ましい。
そこで本研究では,大規模言語モデル(LLM)を用いて,簡単なテキスト記述から計画的ドメインモデルを生成する方法について検討する。
具体的には、LLM生成ドメインの自動評価のためのフレームワークについて、ドメインインスタンスの計画セットを比較して紹介する。
最後に,9つの計画領域にまたがるコーディングモデルとチャットモデル,および自然言語ドメイン記述の3つのクラスを含む,7つの大規模言語モデルの実証分析を行う。
以上の結果から,LLM,特に高いパラメータ数を持つものは,自然言語記述から適切な計画領域を生成するのに適度な習熟度を示した。
私たちのコードはhttps://github.com/IBM/NL2PDDLで公開されています。
関連論文リスト
- Learning to Generalize Unseen Domains via Multi-Source Meta Learning for Text Classification [71.08024880298613]
テキスト分類の多元的領域一般化について検討する。
本稿では、複数の参照ドメインを使用して、未知のドメインで高い精度を達成可能なモデルをトレーニングするフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T07:46:21Z) - Multi-agent Planning using Visual Language Models [2.2369578015657954]
大規模言語モデル(LLM)とビジュアル言語モデル(VLM)は、様々なドメインやタスクにわたるパフォーマンスとアプリケーションの改善により、関心を集めている。
LLMとVLMは、特に問題領域の深い理解が必要な場合、誤った結果をもたらす。
本稿では,特定のデータ構造を入力として必要とせずに動作可能なマルチエージェント型タスクプランニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-08-10T08:10:17Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
大規模言語モデル(LLM)は多用途であり、多様なタスクに対処することができる。
従来のアプローチでは、ドメイン固有のデータによる継続的な事前トレーニングを行うか、一般的なLLMをサポートするために検索拡張を採用する。
BLADEと呼ばれる新しいフレームワークを提案する。このフレームワークは、小さなDomain-spEcificモデルでブラックボックスのLArge言語モデルを拡張する。
論文 参考訳(メタデータ) (2024-03-27T08:57:21Z) - PARADISE: Evaluating Implicit Planning Skills of Language Models with Procedural Warnings and Tips Dataset [0.0]
PARADISE は,wikiHow をベースとした実践的な手続きテキスト上で,Q&A 形式を用いた帰納的推論タスクである。
計画の暗黙的な知識を与えられた目標からのみ推論するモデルの能力をテストすることを目的として、中間的なステップを除く、目標に直接関連した警告およびヒント推論タスクを含む。
我々の実験は、微調整言語モデルとゼロショットプロンプトを利用して、ほとんどのシナリオにおいて、大規模言語モデルに対するタスク固有小モデルの有効性を明らかにした。
論文 参考訳(メタデータ) (2024-03-05T18:01:59Z) - ChipNeMo: Domain-Adapted LLMs for Chip Design [19.43613652552849]
ChipNeMoは、産業用チップ設計のための大規模言語モデル(LLM)の応用を探求することを目的としている。
ドメイン適応型トークン化、ドメイン適応型継続事前トレーニング、ドメイン固有命令とのモデルアライメント、ドメイン適応型検索モデルを採用する。
論文 参考訳(メタデータ) (2023-10-31T22:35:58Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - Progressive Generation of Long Text with Pretrained Language Models [83.62523163717448]
GPT-2のような大量のテキストコーパスで事前訓練された大規模言語モデル(LM)は、強力なオープンドメインテキストジェネレータである。
このようなモデルが、特に小さなコーパス上のターゲットドメインに微調整された場合、コヒーレントな長いテキストパスを生成することは依然として困難である。
本稿では,低解像度から高解像度の画像に触発されて,テキストを段階的に生成する簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2020-06-28T21:23:05Z) - DomBERT: Domain-oriented Language Model for Aspect-based Sentiment
Analysis [71.40586258509394]
本研究では、ドメイン内コーパスと関連するドメインコーパスの両方から学習するためのBERTの拡張であるDomBERTを提案する。
アスペクトベース感情分析における課題の整理実験を行い、有望な結果を示す。
論文 参考訳(メタデータ) (2020-04-28T21:07:32Z) - Unsupervised Domain Clusters in Pretrained Language Models [61.832234606157286]
大規模事前学習型言語モデルでは,教師なしのドメインによってクラスタ化される文表現を暗黙的に学習する。
このようなモデルに基づくドメインデータ選択手法を提案する。
我々は5つの異なる領域にわたるニューラルネットワーク翻訳のためのデータ選択手法を評価する。
論文 参考訳(メタデータ) (2020-04-05T06:22:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。