ERAGent: Enhancing Retrieval-Augmented Language Models with Improved Accuracy, Efficiency, and Personalization
- URL: http://arxiv.org/abs/2405.06683v1
- Date: Mon, 6 May 2024 04:42:18 GMT
- Title: ERAGent: Enhancing Retrieval-Augmented Language Models with Improved Accuracy, Efficiency, and Personalization
- Authors: Yunxiao Shi, Xing Zi, Zijing Shi, Haimin Zhang, Qiang Wu, Min Xu,
- Abstract summary: We introduce ERAGent, a cutting-edge framework that embodies an advancement in the RAG area.
Retrieval Trigger is incorporated to curtail extraneous external knowledge retrieval without sacrificing response quality.
ERAGent personalizes responses by incorporating a learned user profile.
- Score: 14.62114319247837
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Retrieval-augmented generation (RAG) for language models significantly improves language understanding systems. The basic retrieval-then-read pipeline of response generation has evolved into a more extended process due to the integration of various components, sometimes even forming loop structures. Despite its advancements in improving response accuracy, challenges like poor retrieval quality for complex questions that require the search of multifaceted semantic information, inefficiencies in knowledge re-retrieval during long-term serving, and lack of personalized responses persist. Motivated by transcending these limitations, we introduce ERAGent, a cutting-edge framework that embodies an advancement in the RAG area. Our contribution is the introduction of the synergistically operated module: Enhanced Question Rewriter and Knowledge Filter, for better retrieval quality. Retrieval Trigger is incorporated to curtail extraneous external knowledge retrieval without sacrificing response quality. ERAGent also personalizes responses by incorporating a learned user profile. The efficiency and personalization characteristics of ERAGent are supported by the Experiential Learner module which makes the AI assistant being capable of expanding its knowledge and modeling user profile incrementally. Rigorous evaluations across six datasets and three question-answering tasks prove ERAGent's superior accuracy, efficiency, and personalization, emphasizing its potential to advance the RAG field and its applicability in practical systems.
Related papers
- Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers [0.0]
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm to enhance large language models.<n>RAG introduces new challenges in retrieval quality, grounding fidelity, pipeline efficiency, and robustness against noisy or adversarial inputs.<n>This survey aims to consolidate current knowledge in RAG research and serve as a foundation for the next generation of retrieval-augmented language modeling systems.
arXiv Detail & Related papers (2025-05-28T22:57:04Z) - Enhancing tutoring systems by leveraging tailored promptings and domain knowledge with Large Language Models [2.5362697136900563]
AI-driven tools like ChatGPT and Intelligent Tutoring Systems (ITS) have enhanced learning experiences through personalisation and flexibility.<n>ITSs can adapt to individual learning needs and provide customised feedback based on a student's performance, cognitive state, and learning path.<n>Our research aims to address these gaps by integrating skill-aligned feedback via Retrieval Augmented Generation (RAG) into prompt engineering for Large Language Models (LLMs)
arXiv Detail & Related papers (2025-05-02T02:30:39Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.
SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.
We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - A Survey on Knowledge-Oriented Retrieval-Augmented Generation [45.65542434522205]
Retrieval-Augmented Generation (RAG) has gained significant attention in recent years.
RAG combines large-scale retrieval systems with generative models.
We discuss the key characteristics of RAG, such as its ability to augment generative models with dynamic external knowledge.
arXiv Detail & Related papers (2025-03-11T01:59:35Z) - Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models [31.769428095250912]
Auto-RAG is an autonomous iterative retrieval model centered on the reasoning capabilities of Large Language Models (LLMs)
We develop a method for autonomously synthesizing reasoning-based decision-making instructions in iterative retrieval.
Auto-RAG expresses the iterative retrieval process in natural language, enhancing interpretability.
arXiv Detail & Related papers (2024-11-29T03:01:05Z) - AssistRAG: Boosting the Potential of Large Language Models with an Intelligent Information Assistant [23.366991558162695]
Large Language Models generate factually incorrect information, known as "hallucination"
To cope with these challenges, we propose Assistant-based Retrieval-Augmented Generation (AssistRAG)
This assistant manages memory and knowledge through tool usage, action execution, memory building, and plan specification.
arXiv Detail & Related papers (2024-11-11T09:03:52Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
We propose textbfVERA (textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented systems), a system designed to evaluate and enhance the retrieved context before response generation.
VERA employs an evaluator-cum-enhancer LLM that first checks if external retrieval is necessary, evaluates the relevance and redundancy of the retrieved context, and refines it to eliminate non-essential information.
arXiv Detail & Related papers (2024-09-18T16:10:47Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - RA-ISF: Learning to Answer and Understand from Retrieval Augmentation via Iterative Self-Feedback [19.28222902440827]
Large language models (LLMs) demonstrate exceptional performance in numerous tasks but still heavily rely on knowledge stored in their parameters.
Retrieval-augmented generation (RAG) methods address this issue by integrating external knowledge.
We propose Retrieval Augmented Iterative Self-Feedback (RA-ISF), a framework that iteratively decomposes tasks and processes them in three submodules to enhance the model's problem-solving capabilities.
arXiv Detail & Related papers (2024-03-11T16:01:05Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
Large language models (LLMs) have shown superior performance without task-specific fine-tuning.
Retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering.
Self-Knowledge guided Retrieval augmentation (SKR) is a simple yet effective method which can let LLMs refer to the questions they have previously encountered.
arXiv Detail & Related papers (2023-10-08T04:22:33Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
Current knowledge-grounded dialogue systems often fail to align the generated responses with human-preferred qualities.
We propose Polished & Informed Candidate Scoring (PICK), a generation re-scoring framework.
We demonstrate the effectiveness of PICK in generating responses that are more faithful while keeping them relevant to the dialogue history.
arXiv Detail & Related papers (2023-09-19T08:27:09Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.