論文の概要: Evaluating the Efficacy of AI Techniques in Textual Anonymization: A Comparative Study
- arxiv url: http://arxiv.org/abs/2405.06709v1
- Date: Thu, 9 May 2024 11:29:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 20:31:40.637108
- Title: Evaluating the Efficacy of AI Techniques in Textual Anonymization: A Comparative Study
- Title(参考訳): テキスト匿名化におけるAI技術の有効性評価 : 比較研究
- Authors: Dimitris Asimopoulos, Ilias Siniosoglou, Vasileios Argyriou, Sotirios K. Goudos, Konstantinos E. Psannis, Nikoleta Karditsioti, Theocharis Saoulidis, Panagiotis Sarigiannidis,
- Abstract要約: 本研究では、条件付きランダムフィールド(CRF)、Long Short-Term Memory(LSTM)、Embedddings from Language Models(ELMo)、Transformersアーキテクチャに焦点を当てたテキスト匿名化手法に焦点を当てた。
CRF, LSTM, ELMoは, 従来の手法よりも優れていた。
- 参考スコア(独自算出の注目度): 5.962542204378336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the digital era, with escalating privacy concerns, it's imperative to devise robust strategies that protect private data while maintaining the intrinsic value of textual information. This research embarks on a comprehensive examination of text anonymisation methods, focusing on Conditional Random Fields (CRF), Long Short-Term Memory (LSTM), Embeddings from Language Models (ELMo), and the transformative capabilities of the Transformers architecture. Each model presents unique strengths since LSTM is modeling long-term dependencies, CRF captures dependencies among word sequences, ELMo delivers contextual word representations using deep bidirectional language models and Transformers introduce self-attention mechanisms that provide enhanced scalability. Our study is positioned as a comparative analysis of these models, emphasising their synergistic potential in addressing text anonymisation challenges. Preliminary results indicate that CRF, LSTM, and ELMo individually outperform traditional methods. The inclusion of Transformers, when compared alongside with the other models, offers a broader perspective on achieving optimal text anonymisation in contemporary settings.
- Abstract(参考訳): デジタル時代には、プライバシーの懸念がエスカレートしているため、テキスト情報の本質的な価値を維持しながら、プライベートデータを保護する堅牢な戦略を考案することが不可欠である。
本研究では、条件付きランダムフィールド(CRF)、Long Short-Term Memory(LSTM)、Embddings from Language Models(ELMo)、Transformersアーキテクチャの変換機能を中心に、テキスト匿名化手法の総合的な検討に着手する。
LSTMは長期的依存関係をモデル化し、CRFは単語列間の依存関係をキャプチャし、ELMoは深層双方向言語モデルを用いて文脈的単語表現を提供する。
本研究はこれらのモデルの比較分析として位置づけられ,テキスト匿名化問題に対処する上での相乗的可能性を強調した。
CRF, LSTM, ELMoは, 従来の手法よりも優れていた。
トランスフォーマーは、他のモデルと比べれば、現代の設定で最適なテキスト匿名化を実現するためのより広い視点を提供する。
関連論文リスト
- Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
テキストレス音声言語モデル(SLM)のセマンティック理解を強化するためのAlign-SLMフレームワークを導入する。
提案手法は、与えられたプロンプトから複数の音声継続を生成し、意味的指標を用いて、直接選好最適化(DPO)のための選好データを生成する。
語彙および構文モデリングのためのZeroSpeech 2021ベンチマーク、意味的コヒーレンスのためのStoryClozeデータセットの音声バージョン、GPT4-oスコアや人間評価などの音声生成指標を用いて、フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-11-04T06:07:53Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - Enhancing Short-Text Topic Modeling with LLM-Driven Context Expansion and Prefix-Tuned VAEs [25.915607750636333]
本稿では,大規模言語モデル(LLM)を利用して,トピックモデリングを適用する前に,短いテキストをより詳細なシーケンスに拡張する手法を提案する。
提案手法は,データ空間が極端である実世界のデータセットに対する広範な実験により,短文のトピックモデリング性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-10-04T01:28:56Z) - Benchmarking Advanced Text Anonymisation Methods: A Comparative Study on Novel and Traditional Approaches [5.891554349884001]
本稿では,変圧器モデルと大規模言語モデルの性能を,テキスト匿名化のための従来のアーキテクチャと比較する。
本研究は, 従来の手法と現代手法の有効性について, それぞれのアプローチの長所と短所を明らかにした。
論文 参考訳(メタデータ) (2024-04-22T12:06:54Z) - Language-Guided World Models: A Model-Based Approach to AI Control [31.9089380929602]
本稿では,LWM(Language-Guided World Models)の概念を紹介する。
LWMは、テキストを読むことで環境をシミュレートできる確率モデルである。
構成言語記述を一般化できる堅牢なLWMを開発するための最初のステップを採る。
論文 参考訳(メタデータ) (2024-01-24T03:11:36Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
クリックスルーレート(CTR)予測は、パーソナライズされたオンラインサービスにおいてコア機能モジュールとして機能する。
CTR予測のための従来のIDベースのモデルは、表形式の1ホットエンコードされたID特徴を入力として取る。
事前訓練された言語モデル(PLM)は、テキストのモダリティの文を入力として取る別のパラダイムを生み出した。
本稿では,CTR予測のためのIDベースモデルと事前学習言語モデル(FLIP)間の細粒度特徴レベルのアライメントを提案する。
論文 参考訳(メタデータ) (2023-10-30T11:25:03Z) - Capturing Spectral and Long-term Contextual Information for Speech
Emotion Recognition Using Deep Learning Techniques [0.0]
本研究では,テキストデータ処理のためのグラフ畳み込みネットワーク(GCN)と,音声信号解析のためのHuBERT変換器を組み合わせたアンサンブルモデルを提案する。
GCNとHuBERTを組み合わせることで、我々のアンサンブルモデルは両方のアプローチの強みを利用することができる。
その結果, 合成モデルが従来の手法の限界を克服し, 音声からの感情認識の精度が向上することが示唆された。
論文 参考訳(メタデータ) (2023-08-04T06:20:42Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Improving the Generalizability of Text-Based Emotion Detection by
Leveraging Transformers with Psycholinguistic Features [27.799032561722893]
本稿では,両方向長短期記憶(BiLSTM)ネットワークと変換器モデル(BERT,RoBERTa)を併用したテキストベースの感情検出手法を提案する。
提案したハイブリッドモデルでは,標準的なトランスフォーマーベースアプローチと比較して,分布外データへの一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2022-12-19T13:58:48Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。