論文の概要: Language-Guided World Models: A Model-Based Approach to AI Control
- arxiv url: http://arxiv.org/abs/2402.01695v3
- Date: Wed, 4 Sep 2024 19:13:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 03:56:02.607290
- Title: Language-Guided World Models: A Model-Based Approach to AI Control
- Title(参考訳): 言語誘導世界モデル:AI制御に対するモデルベースアプローチ
- Authors: Alex Zhang, Khanh Nguyen, Jens Tuyls, Albert Lin, Karthik Narasimhan,
- Abstract要約: 本稿では,LWM(Language-Guided World Models)の概念を紹介する。
LWMは、テキストを読むことで環境をシミュレートできる確率モデルである。
構成言語記述を一般化できる堅牢なLWMを開発するための最初のステップを採る。
- 参考スコア(独自算出の注目度): 31.9089380929602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces the concept of Language-Guided World Models (LWMs) -- probabilistic models that can simulate environments by reading texts. Agents equipped with these models provide humans with more extensive and efficient control, allowing them to simultaneously alter agent behaviors in multiple tasks via natural verbal communication. In this work, we take initial steps in developing robust LWMs that can generalize to compositionally novel language descriptions. We design a challenging world modeling benchmark based on the game of MESSENGER (Hanjie et al., 2021), featuring evaluation settings that require varying degrees of compositional generalization. Our experiments reveal the lack of generalizability of the state-of-the-art Transformer model, as it offers marginal improvements in simulation quality over a no-text baseline. We devise a more robust model by fusing the Transformer with the EMMA attention mechanism (Hanjie et al., 2021). Our model substantially outperforms the Transformer and approaches the performance of a model with an oracle semantic parsing and grounding capability. To demonstrate the practicality of this model in improving AI safety and transparency, we simulate a scenario in which the model enables an agent to present plans to a human before execution, and to revise plans based on their language feedback.
- Abstract(参考訳): 本稿では,LWM(Language-Guided World Models)の概念を紹介する。
これらのモデルを備えたエージェントは、人間により広範囲で効率的な制御を提供し、自然な言語コミュニケーションを通じて複数のタスクにおけるエージェントの振る舞いを同時に変更することができる。
本研究では,言語記述を包括的に新規に記述できるロバストなLWMの開発において,最初の一歩を踏み出す。
我々は,MESSENGER (Hanjie et al , 2021) のゲームに基づいて,様々な構成一般化を必要とする評価設定を特徴とする,挑戦的な世界モデリングベンチマークを設計する。
本実験は,非テキストベースラインに対するシミュレーション品質の限界改善を提供するため,最先端トランスフォーマーモデルの一般化性の欠如を明らかにした。
我々は、トランスフォーマーをEMMAアテンション機構で融合させることにより、より堅牢なモデルを考案した(Hanjie et al , 2021)。
我々のモデルはトランスフォーマーを大幅に上回り、オラクルのセマンティックパースとグラウンド機能を備えたモデルの性能にアプローチする。
このモデルがAIの安全性と透明性を改善するための実用性を実証するために、エージェントが実行前に計画を提示し、言語フィードバックに基づいて計画を修正するシナリオをシミュレートする。
関連論文リスト
- Masked Generative Priors Improve World Models Sequence Modelling Capabilities [19.700020499490137]
Masked Generative Modellingはより効率的で優れた帰納的バイアスとして登場した。
GIT-STORMは、Atari 100kベンチマークでRLタスクのパフォーマンスが大幅に向上したことを示している。
トランスフォーマーをベースとした世界モデルが初めて連続行動環境に適用し、先行研究における大きなギャップに対処する。
論文 参考訳(メタデータ) (2024-10-10T11:52:07Z) - Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization [0.6629765271909505]
本稿では,言語モデルにおける弱強一般化によるモデルアライメントの新たなアプローチを提案する。
このファシリテーションに基づくアプローチは、モデルの性能を高めるだけでなく、モデルアライメントの性質に関する洞察も提供することを示唆している。
論文 参考訳(メタデータ) (2024-09-11T15:16:25Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Evaluating the Efficacy of AI Techniques in Textual Anonymization: A Comparative Study [5.962542204378336]
本研究では、条件付きランダムフィールド(CRF)、Long Short-Term Memory(LSTM)、Embedddings from Language Models(ELMo)、Transformersアーキテクチャに焦点を当てたテキスト匿名化手法に焦点を当てた。
CRF, LSTM, ELMoは, 従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-05-09T11:29:25Z) - STORM: Efficient Stochastic Transformer based World Models for
Reinforcement Learning [82.03481509373037]
近年,モデルに基づく強化学習アルゴリズムは視覚入力環境において顕著な有効性を示している。
本稿では,強力なモデリングと生成機能を組み合わせた効率的な世界モデルアーキテクチャであるTransformer-based wORld Model (STORM)を紹介する。
Stormは、Atari 100$kベンチマークで平均126.7%の人的パフォーマンスを達成し、最先端のメソッドの中で新しい記録を樹立した。
論文 参考訳(メタデータ) (2023-10-14T16:42:02Z) - BatGPT: A Bidirectional Autoregessive Talker from Generative Pre-trained
Transformer [77.28871523946418]
BatGPTは武漢大学と上海江東大学が共同で設計・訓練した大規模言語モデルである。
テキストプロンプト、画像、オーディオなど、さまざまなタイプの入力に応答して、非常に自然で、流動的なテキストを生成することができる。
論文 参考訳(メタデータ) (2023-07-01T15:10:01Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - PaLM-E: An Embodied Multimodal Language Model [101.29116156731762]
本研究では,実世界の連続型センサを言語モデルに組み込むための具体的言語モデルを提案する。
我々は、複数の具体的タスクのために、事前訓練された大規模言語モデルとともに、これらのエンコーディングをエンドツーエンドにトレーニングする。
562Bパラメータを持つ大モデル PaLM-E-562B は、OK-VQA 上での最先端性能を持つ視覚言語ジェネラリストである。
論文 参考訳(メタデータ) (2023-03-06T18:58:06Z) - N-Grammer: Augmenting Transformers with latent n-grams [35.39961549040385]
本稿では,テキストシーケンスの離散潜在表現から構築したn-gramでモデルを拡張することにより,統計言語モデリングの文献に触発されたトランスフォーマーアーキテクチャの簡易かつ効果的な変更を提案する。
我々は、C4データセットの言語モデリングにおけるN-GrammerモデルとSuperGLUEデータセットのテキスト分類を評価し、TransformerやPrimerといった強力なベースラインよりも優れていることを発見した。
論文 参考訳(メタデータ) (2022-07-13T17:18:02Z) - Factorized Neural Transducer for Efficient Language Model Adaptation [51.81097243306204]
空白および語彙予測を分解し,ニューラルトランスデューサの因子化モデルを提案する。
この因子化は、音声認識のためのトランスデューサにスタンドアロン言語モデルの改善を移すことが期待できる。
提案した因子化ニューラルトランスデューサは、言語モデル適応にドメイン外テキストデータを使用する場合、15%から20%のWER改善が得られることを示す。
論文 参考訳(メタデータ) (2021-09-27T15:04:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。