論文の概要: Boolean matrix logic programming for active learning of gene functions in genome-scale metabolic network models
- arxiv url: http://arxiv.org/abs/2405.06724v2
- Date: Mon, 20 May 2024 13:01:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 20:15:46.280698
- Title: Boolean matrix logic programming for active learning of gene functions in genome-scale metabolic network models
- Title(参考訳): ゲノム規模メタボリックネットワークモデルにおける遺伝子機能の能動的学習のためのブール行列論理プログラミング
- Authors: Lun Ai, Stephen H. Muggleton, Shi-Shun Liang, Geoff S. Baldwin,
- Abstract要約: 我々は、細胞工学の促進と生物学的発見を促進するために、論理ベースの機械学習技術を適用しようとしている。
我々は,情報的実験を導くことでゲノム仮説空間を効率的に探索する新しいシステム,BMLP_active$を導入する。
$BMLP_active$は、ランダムな実験よりもトレーニング例が少ない遺伝子ペア間の相互作用をうまく学べる。
- 参考スコア(独自算出の注目度): 4.762323642506732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Techniques to autonomously drive research have been prominent in Computational Scientific Discovery, while Synthetic Biology is a field of science that focuses on designing and constructing new biological systems for useful purposes. Here we seek to apply logic-based machine learning techniques to facilitate cellular engineering and drive biological discovery. Comprehensive databases of metabolic processes called genome-scale metabolic network models (GEMs) are often used to evaluate cellular engineering strategies to optimise target compound production. However, predicted host behaviours are not always correctly described by GEMs, often due to errors in the models. The task of learning the intricate genetic interactions within GEMs presents computational and empirical challenges. To address these, we describe a novel approach called Boolean Matrix Logic Programming (BMLP) by leveraging boolean matrices to evaluate large logic programs. We introduce a new system, $BMLP_{active}$, which efficiently explores the genomic hypothesis space by guiding informative experimentation through active learning. In contrast to sub-symbolic methods, $BMLP_{active}$ encodes a state-of-the-art GEM of a widely accepted bacterial host in an interpretable and logical representation using datalog logic programs. Notably, $BMLP_{active}$ can successfully learn the interaction between a gene pair with fewer training examples than random experimentation, overcoming the increase in experimental design space. $BMLP_{active}$ enables rapid optimisation of metabolic models to reliably engineer biological systems for producing useful compounds. It offers a realistic approach to creating a self-driving lab for microbial engineering.
- Abstract(参考訳): 研究を自律的に推進する技術はComputational Scientific Discoveryにおいて顕著であり、Synthetic Biologyは有用な目的のために新しい生物学的システムの設計と構築に焦点を当てた科学分野である。
ここでは、細胞工学の促進と生物学的発見の促進に論理ベースの機械学習技術を適用したい。
ゲノムスケールメタボリックネットワークモデル (GEMs) と呼ばれる代謝過程の包括的データベースは、しばしば標的化合物生産を最適化するための細胞工学的戦略を評価するために使用される。
しかしながら、予測されたホストの振る舞いは、しばしばモデル内のエラーのために、常にGEMによって正しく記述されるわけではない。
GEM内の複雑な遺伝的相互作用を学習するタスクは、計算的および経験的課題を提示する。
これらの問題に対処するために,ブール行列を利用して大規模論理プログラムを評価する,Boolean Matrix Logic Programming (BMLP) と呼ばれる新しい手法について述べる。
能動的学習を通じて情報的実験を導くことにより,ゲノム仮説空間を効率的に探索するシステム「BMLP_{active}$」を導入する。
サブシンボリックな方法とは対照的に、$BMLP_{active}$は、データログ論理プログラムを用いて解釈可能で論理的な表現で広く受け入れられている細菌ホストの最先端のGEMを符号化する。
特に、$BMLP_{active}$は、ランダムな実験よりも訓練例が少ない遺伝子ペア間の相互作用をうまく学習することができ、実験的な設計空間の増加を克服することができる。
$BMLP_{active}$は、代謝モデルの迅速な最適化を可能にし、有用な化合物を製造するための生物学的システムを確実に設計する。
それは、微生物工学のための自動運転ラボを作るための現実的なアプローチを提供する。
関連論文リスト
- BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [116.43369600518163]
我々は,新たな実験を設計し,その成果の理由を判断し,仮説空間を効率的にナビゲートし,望ましい解を得るエージェントであるBioDiscoveryAgentを開発した。
BioDiscoveryAgentは、機械学習モデルをトレーニングしたり、取得関数を明示的に設計することなく、新しい実験を独自に設計することができる。
5つのデータセットで所望の表現型を検出することで平均18%の改善を実現している。
論文 参考訳(メタデータ) (2024-05-27T19:57:17Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Human Comprehensible Active Learning of Genome-Scale Metabolic Networks [7.838090421892651]
仮説空間を効率的に探索し、実験設計を導く、理解可能な機械学習アプローチが緊急に必要である。
Inductive Logic Programming (ILP) に基づく新しい機械学習フレームワーク ILP-iML1515 を提案する。
ILP-iML1515はゲノムスケールの代謝モデルの理解可能な論理的表現に基づいて構築されており、補助栄養変異体試験から新しい論理構造を学習することでモデルを更新することができる。
論文 参考訳(メタデータ) (2023-08-24T12:42:00Z) - SBMLtoODEjax: Efficient Simulation and Optimization of Biological
Network Models in JAX [19.55237447763145]
本稿では,SBMLモデルとMLサポートパイプラインをシームレスに統合する軽量ライブラリであるSBMLtoODEjaxを紹介する。
JAXの能力を利用して効率的な並列シミュレーションと最適化を行い、生物学的ネットワーク分析の研究を加速することを目的としています。
論文 参考訳(メタデータ) (2023-07-17T12:47:33Z) - An Optimal Likelihood Free Method for Biological Model Selection [0.0]
システム生物学は、固有の生物学的複雑性を減らすために、生物学的システムの数学モデルを作成しようとしている。
本稿では, システム生物学の数学的モデルを用いた自動生物モデル選択アルゴリズムと, 可能性自由推論手法を提案する。
論文 参考訳(メタデータ) (2022-08-03T21:05:20Z) - Deep metric learning improves lab of origin prediction of genetically
engineered plasmids [63.05016513788047]
遺伝工学の属性(GEA)は、配列-ラブの関連を作る能力である。
本稿では,計量学習に基づいて,最も可能性の高い実験室をランク付けする手法を提案する。
我々は、特定の実験室のプラスミド配列のキーシグネチャを抽出することができ、モデル出力の解釈可能な検査を可能にする。
論文 参考訳(メタデータ) (2021-11-24T16:29:03Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Automated Biodesign Engineering by Abductive Meta-Interpretive Learning [8.788941848262786]
Abductive Meta-Interpretive Learning($Meta_Abd$)を活用した自動バイオデザインエンジニアリングフレームワークを提案します。
本稿では,Abductive Meta-Interpretive Learning(Meta_Abd$)を活用したバイオデザイン自動工学フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-17T12:10:26Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。