論文の概要: On the Shape of Brainscores for Large Language Models (LLMs)
- arxiv url: http://arxiv.org/abs/2405.06725v2
- Date: Tue, 14 May 2024 03:46:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 18:12:57.026341
- Title: On the Shape of Brainscores for Large Language Models (LLMs)
- Title(参考訳): 大規模言語モデル(LLM)における脳スコアの形状について
- Authors: Jingkai Li,
- Abstract要約: 大型言語モデル(LLM)とヒト脳/神経系の機能的類似性を評価する手段として「脳スコア」が登場した。
両fMRIデータから得られるトポロジカルな特徴を抽出し,新しいスコアの意味を抽出することを目的とした。
我々は,36の線形回帰モデルを訓練し,信頼性と有効性を明らかにするために,徹底的な統計的解析を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rise of Large Language Models (LLMs), the novel metric "Brainscore" emerged as a means to evaluate the functional similarity between LLMs and human brain/neural systems. Our efforts were dedicated to mining the meaning of the novel score by constructing topological features derived from both human fMRI data involving 190 subjects, and 39 LLMs plus their untrained counterparts. Subsequently, we trained 36 Linear Regression Models and conducted thorough statistical analyses to discern reliable and valid features from our constructed ones. Our findings reveal distinctive feature combinations conducive to interpreting existing brainscores across various brain regions of interest (ROIs) and hemispheres, thereby significantly contributing to advancing interpretable machine learning (iML) studies. The study is enriched by our further discussions and analyses concerning existing brainscores. To our knowledge, this study represents the first attempt to comprehend the novel metric brainscore within this interdisciplinary domain.
- Abstract(参考訳): LLM(Large Language Models)の台頭とともに、LLMと人間の脳/神経系の機能的類似性を評価する手段として、新しいメトリクスであるBrainscoreが登場した。
本研究は,190名の被験者と39名のLLMと訓練を受けていない被験者を対象とするヒトfMRIデータから得られたトポロジカルな特徴を抽出することにより,新規スコアの意味を抽出することを目的とした。
その後,36種類の線形回帰モデルを訓練し,信頼性と有効性を明らかにするため,詳細な統計的解析を行った。
本研究は, 興味領域 (ROIs) と半球領域 (hemispheres) にまたがる既存の脳スコアの解釈に特徴的な特徴の組み合わせを明らかにし, 機械学習(iML) 研究の進展に大きく寄与した。
この研究は、既存の脳スコアに関するさらなる議論と分析によって豊かになっている。
我々の知る限り、この研究は、この学際領域における新しいメートル法脳スコアを理解するための最初の試みである。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
LLMを用いたfMRIエンコーディングと脳のスコアを用いた高齢者の言語関連機能変化について検討する。
脳のスコアと認知スコアの相関関係を脳全体のROIと言語関連ROIの両方で分析した。
以上の結果から,認知能力の向上は,中側頭回に有意な相関がみられた。
論文 参考訳(メタデータ) (2024-07-15T01:09:08Z) - Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
大規模言語モデル(LLM)は、人間の言語システムの効果的なモデルであることが示されている。
本研究では、未学習モデルの驚くほどのアライメントを駆動する重要なアーキテクチャコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-21T12:54:03Z) - BrainSegFounder: Towards 3D Foundation Models for Neuroimage Segmentation [6.5388528484686885]
本研究は,医療基盤モデルの創出に向けた新しいアプローチを紹介する。
本稿では,視覚変換器を用いた2段階事前学習手法を提案する。
BrainFounderは、これまでの勝利ソリューションの成果を上回る、大幅なパフォーマンス向上を実演している。
論文 参考訳(メタデータ) (2024-06-14T19:49:45Z) - Sharing Matters: Analysing Neurons Across Languages and Tasks in LLMs [70.3132264719438]
我々は,タスクや言語間でニューロンの活性化がどのように共有されるかを調べることで,研究ギャップを埋めることを目指している。
我々は、異なる言語にまたがる特定の入力に対する応答に基づいて、ニューロンを4つの異なるカテゴリに分類する。
分析の結果, (i) ニューロン共有のパターンはタスクや例の特徴に大きく影響され, (ii) ニューロン共有は言語類似性に完全には対応しない, (iii) 共有ニューロンは応答の生成において重要な役割を担っている。
論文 参考訳(メタデータ) (2024-06-13T16:04:11Z) - What Are Large Language Models Mapping to in the Brain? A Case Against Over-Reliance on Brain Scores [1.8175282137722093]
大規模言語モデル(LLM)の内部表現は最先端の脳スコアを達成し、人間の言語処理と計算原理を共有するという憶測に繋がる。
本稿では、LLM-to-Brainマッピングに関する衝撃的な研究で使用される3つのニューラルデータセットを分析し、参加者が短いパスを読み取るfMRIデータセットに特に焦点をあてる。
このデータセット上で訓練されたLLMの脳のスコアは、文の長さ、位置、代名詞による単語の埋め込みによって大きく説明できる。
論文 参考訳(メタデータ) (2024-06-03T17:13:27Z) - Unveiling A Core Linguistic Region in Large Language Models [49.860260050718516]
本稿では,脳局在化をプロトタイプとして用いた類似研究を行う。
我々は、言語能力に対応する大規模言語モデルにおいて、中核領域を発見した。
我々は,言語能力の向上が必ずしもモデルの知識レベルの向上に伴わないことを観察する。
論文 参考訳(メタデータ) (2023-10-23T13:31:32Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z) - Brain-inspired probabilistic generative model for double articulation
analysis of spoken language [7.0349768355860895]
ヒト脳は、音声言語における二重関節構造を解析する。
ヒトの脳内でDAAがどのように実行されるかは未定である。
本研究では、いくつかの神経科学調査の結果に基づいて、脳内で実現可能なDAA仮説のためのPGMを提案する。
論文 参考訳(メタデータ) (2022-07-06T06:03:10Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
言語の神経基盤を分解する一般的なアプローチは、個人間で異なる刺激に対する脳の反応を関連付けている。
そこで本研究では,自然刺激に曝露された被験者に対して,モデルに基づくアプローチが等価な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-12T15:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。