論文の概要: CasCalib: Cascaded Calibration for Motion Capture from Sparse Unsynchronized Cameras
- arxiv url: http://arxiv.org/abs/2405.06845v1
- Date: Fri, 10 May 2024 23:02:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 19:44:41.650114
- Title: CasCalib: Cascaded Calibration for Motion Capture from Sparse Unsynchronized Cameras
- Title(参考訳): CasCalib: スパース非同期カメラからのモーションキャプチャのためのカスケードキャリブレーション
- Authors: James Tang, Shashwat Suri, Daniel Ajisafe, Bastian Wandt, Helge Rhodin,
- Abstract要約: オフザシェルフ3次元ポーズ推定器を用いた単眼画像から3次元人間のポーズを推定できるようになった。
多くの実用アプリケーションは、マルチビューキューとカメラキャリブレーションが必要な、きめ細かい絶対ポーズ情報を必要とする。
私たちのゴールは、時間同期を含む完全自動化と、固有のカメラキャリブレーションと、外部カメラキャリブレーションです。
- 参考スコア(独自算出の注目度): 18.51320244029833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is now possible to estimate 3D human pose from monocular images with off-the-shelf 3D pose estimators. However, many practical applications require fine-grained absolute pose information for which multi-view cues and camera calibration are necessary. Such multi-view recordings are laborious because they require manual calibration, and are expensive when using dedicated hardware. Our goal is full automation, which includes temporal synchronization, as well as intrinsic and extrinsic camera calibration. This is done by using persons in the scene as the calibration objects. Existing methods either address only synchronization or calibration, assume one of the former as input, or have significant limitations. A common limitation is that they only consider single persons, which eases correspondence finding. We attain this generality by partitioning the high-dimensional time and calibration space into a cascade of subspaces and introduce tailored algorithms to optimize each efficiently and robustly. The outcome is an easy-to-use, flexible, and robust motion capture toolbox that we release to enable scientific applications, which we demonstrate on diverse multi-view benchmarks. Project website: https://github.com/jamestang1998/CasCalib.
- Abstract(参考訳): オフザシェルフ3次元ポーズ推定器を用いた単眼画像から3次元人間のポーズを推定できるようになった。
しかし、多くの実用的な応用には、マルチビューキューとカメラキャリブレーションが必要な、きめ細かい絶対ポーズ情報が必要である。
このようなマルチビュー記録は、手動キャリブレーションが必要であり、専用ハードウェアを使用する場合、高価であるため、面倒である。
私たちのゴールは、時間同期を含む完全自動化と、固有のカメラキャリブレーションと、外部カメラキャリブレーションです。
これは、現場の人物を校正対象とする。
既存のメソッドは同期かキャリブレーションのみを扱うか、前者のどちらかを入力とするか、あるいは大きな制限を持つ。
共通の制限は、単一の人物のみを考慮し、対応を見つけるのを容易にすることである。
我々は,高次元時間とキャリブレーション空間を部分空間のカスケードに分割することで,この一般化を実現する。
その結果は、科学的な応用を可能にするためにリリースした、使いやすく、柔軟で、堅牢なモーションキャプチャーツールボックスで、多様なマルチビューベンチマークで示しています。
プロジェクトウェブサイト: https://github.com/jamestang1998/CasCalib
関連論文リスト
- EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - SceneCalib: Automatic Targetless Calibration of Cameras and Lidars in
Autonomous Driving [10.517099201352414]
SceneCalibは、複数のカメラとライダーセンサーを含むシステムにおいて、外在パラメータと内在パラメータを同時に自己校正する新しい方法である。
我々は,カメラ画像とライダー点雲との明示的な対応を必要としない完全自動方式で問題を解決する。
論文 参考訳(メタデータ) (2023-04-11T23:02:16Z) - Deep Learning for Camera Calibration and Beyond: A Survey [100.75060862015945]
カメラキャリブレーションでは、キャプチャされたシーケンスから幾何学的特徴を推測するために、カメラパラメータを推定する。
近年の取り組みでは,手動キャリブレーションの繰り返し作業に代えて,学習ベースのソリューションが活用される可能性が示唆されている。
論文 参考訳(メタデータ) (2023-03-19T04:00:05Z) - Scene-Aware 3D Multi-Human Motion Capture from a Single Camera [83.06768487435818]
静止カメラで記録された1枚のRGBビデオから、シーン内の複数の人間の3次元位置を推定し、その身体形状と調音を推定する問題を考察する。
コンピュータビジョンの最近の進歩を,2次元の人体関節,関節角度,正規化不均等マップ,人間のセグメンテーションマスクなど,様々なモダリティのための大規模事前訓練モデルを用いて活用している。
特に,2次元の関節と関節角度を用いた正規化不均等予測から,シーン深度とユニークな人格尺度を推定する。
論文 参考訳(メタデータ) (2023-01-12T18:01:28Z) - Online Marker-free Extrinsic Camera Calibration using Person Keypoint
Detections [25.393382192511716]
本稿では,複数のスマートエッジセンサの外部校正のためのマーカーレスオンライン手法を提案する。
本手法では,固有カメラパラメータを推定し,カメラのポーズの粗い初期推定値でプライマーを推定する。
本手法による校正は,オフライン手法による基準校正よりも低い再投影誤差が得られることを示す。
論文 参考訳(メタデータ) (2022-09-15T15:54:21Z) - A Deep Perceptual Measure for Lens and Camera Calibration [35.03926427249506]
従来のマルチイメージキャリブレーション法の代わりに,単一画像から直接カメラキャリブレーションパラメータを推定することを提案する。
大規模なパノラマデータセットから自動的に生成されたサンプルを用いて、このネットワークをトレーニングする。
そこで我々は, カメラキャリブレーションパラメータを補正した3次元物体のリアリズムの判断を参加者に依頼した。
論文 参考訳(メタデータ) (2022-08-25T18:40:45Z) - MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision [72.5863451123577]
正確な3Dポーズとカメラ推定が可能なニューラルモデルをトレーニングする方法を示す。
本手法は,古典的バンドル調整と弱教師付き単分子3Dベースラインの両方に優れる。
論文 参考訳(メタデータ) (2021-08-10T18:39:56Z) - Dynamic Event Camera Calibration [27.852239869987947]
最初の動的イベントカメラキャリブレーションアルゴリズムを提案する。
カメラとキャリブレーションパターンの間の相対的な動きで捉えたイベントから直接キャリブレーションする。
その結果, 得られたキャリブレーション法は, 10秒未満のデータ列から, 極めて有用かつ確実なキャリブレーションを行うことができた。
論文 参考訳(メタデータ) (2021-07-14T14:52:58Z) - Wide-Baseline Multi-Camera Calibration using Person Re-Identification [27.965850489928457]
本稿では,大規模広ベースシナリオのためのカメラネットワークの3次元ポーズ推定の問題に対処する。
現場の人々を「キーポイント」として扱い、異なるカメラビューに関連付けることは、対応を得るための代替方法である。
本手法ではまず,カメラ間で人間境界ボックスを関連付ける再ID法を用い,境界ボックス対応を点対応に変換する。
論文 参考訳(メタデータ) (2021-04-17T15:09:18Z) - Calibrated and Partially Calibrated Semi-Generalized Homographies [65.29477277713205]
視点と一般化カメラから半一般化ホモグラフィーを推定するための最初の最小解を提案する。
提案した解法は、多くの合成および実世界の実験で実証されたように安定かつ効率的である。
論文 参考訳(メタデータ) (2021-03-11T08:56:24Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
パターンベースのキャリブレーション技術は、カメラの内在を個別にキャリブレーションするために使用することができる。
Infrastucture-based calibration techniqueはSLAMやStructure-from-Motionで事前に構築した3Dマップを用いて外部情報を推定することができる。
本稿では,インフラストラクチャベースのアプローチを用いて,マルチカメラシステムをスクラッチから完全にキャリブレーションすることを提案する。
論文 参考訳(メタデータ) (2020-07-30T09:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。