論文の概要: Linear Explanations for Individual Neurons
- arxiv url: http://arxiv.org/abs/2405.06855v1
- Date: Fri, 10 May 2024 23:48:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 19:44:41.633461
- Title: Linear Explanations for Individual Neurons
- Title(参考訳): 個々のニューロンに対する線形説明法
- Authors: Tuomas Oikarinen, Tsui-Wei Weng,
- Abstract要約: 高い活性化範囲は、ニューロンの因果効果のごく一部にのみ寄与することを示す。
さらに、低いアクティベーションを引き起こす入力は、しばしば非常に異なるものであり、高いアクティベーションを見るだけでは確実に予測できない。
- 参考スコア(独自算出の注目度): 12.231741536057378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years many methods have been developed to understand the internal workings of neural networks, often by describing the function of individual neurons in the model. However, these methods typically only focus on explaining the very highest activations of a neuron. In this paper we show this is not sufficient, and that the highest activation range is only responsible for a very small percentage of the neuron's causal effect. In addition, inputs causing lower activations are often very different and can't be reliably predicted by only looking at high activations. We propose that neurons should instead be understood as a linear combination of concepts, and develop an efficient method for producing these linear explanations. In addition, we show how to automatically evaluate description quality using simulation, i.e. predicting neuron activations on unseen inputs in vision setting.
- Abstract(参考訳): 近年、ニューラルネットワークの内部動作を理解するために多くの手法が開発され、多くの場合、モデル内の個々のニューロンの機能を記述することによって記述されている。
しかしながら、これらの方法は通常、ニューロンの最も高い活性化を説明することのみに焦点を当てる。
本稿では、これが十分ではないことを示し、最も高い活性化範囲がニューロンの因果効果のごく一部にしか寄与しないことを示す。
さらに、低いアクティベーションを引き起こす入力は、しばしば非常に異なるものであり、高いアクティベーションを見るだけでは確実に予測できない。
そこで我々は,ニューロンを概念の線形結合として理解し,これらの線形説明を効率的に生成する方法を提案する。
さらに,視覚条件下でのニューロンの活性化を予測するシミュレーションを用いて,記述品質を自動的に評価する方法を示す。
関連論文リスト
- A More Accurate Approximation of Activation Function with Few Spikes Neurons [6.306126887439676]
スパイキングニューラルネットワーク(SNN)はエネルギー効率のよいニューラルネットワークとして多くの注目を集めている。
従来のスパイキングニューロン、例えば漏れた統合・発火ニューロンは、複雑な非線形活性化関数を正確に表現することはできない。
論文 参考訳(メタデータ) (2024-08-19T02:08:56Z) - Confidence Regulation Neurons in Language Models [91.90337752432075]
本研究では,大規模言語モデルが次世代の予測において不確実性を表現・規制するメカニズムについて検討する。
エントロピーニューロンは異常に高い重量ノルムを特徴とし、最終層正規化(LayerNorm)スケールに影響を与え、ロジットを効果的にスケールダウンさせる。
ここで初めて説明するトークン周波数ニューロンは、各トークンのログをそのログ周波数に比例して増加または抑制することで、出力分布をユニグラム分布から遠ざかる。
論文 参考訳(メタデータ) (2024-06-24T01:31:03Z) - Interpreting the Second-Order Effects of Neurons in CLIP [73.54377859089801]
CLIPの個々のニューロンの機能をテキストで自動的に記述することで解釈する。
ニューロンから後続のアテンションヘッドに流れる影響を、直接出力に解析する「第2次レンズ」を提案する。
以上の結果から,ニューロンの自動解釈は,モデル騙しや新しいモデル機能の導入に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-06-06T17:59:52Z) - Fast gradient-free activation maximization for neurons in spiking neural networks [5.805438104063613]
このようなループのための効率的な設計のフレームワークを提案する。
トレーニング中の人工ニューロンの最適刺激の変化を追跡する。
この洗練された最適刺激の形成は、分類精度の増大と関連している。
論文 参考訳(メタデータ) (2023-12-28T18:30:13Z) - Neuron to Graph: Interpreting Language Model Neurons at Scale [8.32093320910416]
本稿では,大規模言語モデル内の多数のニューロンにまたがる解釈可能性手法のスケールアップを目的とした,新しい自動化手法を提案する。
我々は、トレーニングしたデータセットからニューロンの振る舞いを自動的に抽出し、解釈可能なグラフに変換する革新的なツールであるNeuron to Graph(N2G)を提案する。
論文 参考訳(メタデータ) (2023-05-31T14:44:33Z) - Neural network with optimal neuron activation functions based on
additive Gaussian process regression [0.0]
より柔軟なニューロン活性化機能により、より少ない神経細胞や層を使用でき、表現力を向上させることができる。
加算ガウス過程回帰(GPR)は各ニューロンに特異的な最適なニューロン活性化関数を構築するのに有効であることを示す。
ニューラルネットワークパラメータの非線形フィッティングを回避するアプローチも導入されている。
論文 参考訳(メタデータ) (2023-01-13T14:19:17Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Compositional Explanations of Neurons [52.71742655312625]
本稿では, 合成論理的概念を同定し, 深部表現におけるニューロンの説明手順について述べる。
本稿では,視覚と自然言語処理のモデルにおける解釈可能性に関するいくつかの疑問に答えるために,この手順を用いる。
論文 参考訳(メタデータ) (2020-06-24T20:37:05Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z) - Learning Neural Activations [2.842794675894731]
人工ニューラルネットワークにおける各ニューロンの活性化関数がデータのみから学習されるとどうなるかを検討する。
これは、各ニューロンの活性化機能を、元のネットワーク内のすべてのニューロンによって共有される小さなニューラルネットワークとしてモデル化することで達成される。
論文 参考訳(メタデータ) (2019-12-27T15:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。