論文の概要: A More Accurate Approximation of Activation Function with Few Spikes Neurons
- arxiv url: http://arxiv.org/abs/2409.00044v1
- Date: Mon, 19 Aug 2024 02:08:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:31:02.469885
- Title: A More Accurate Approximation of Activation Function with Few Spikes Neurons
- Title(参考訳): スパイクニューロンの活性化機能のより正確な近似法
- Authors: Dayena Jeong, Jaewoo Park, Jeonghee Jo, Jongkil Park, Jaewook Kim, Hyun Jae Jang, Suyoun Lee, Seongsik Park,
- Abstract要約: スパイキングニューラルネットワーク(SNN)はエネルギー効率のよいニューラルネットワークとして多くの注目を集めている。
従来のスパイキングニューロン、例えば漏れた統合・発火ニューロンは、複雑な非線形活性化関数を正確に表現することはできない。
- 参考スコア(独自算出の注目度): 6.306126887439676
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent deep neural networks (DNNs), such as diffusion models [1], have faced high computational demands. Thus, spiking neural networks (SNNs) have attracted lots of attention as energy-efficient neural networks. However, conventional spiking neurons, such as leaky integrate-and-fire neurons, cannot accurately represent complex non-linear activation functions, such as Swish [2]. To approximate activation functions with spiking neurons, few spikes (FS) neurons were proposed [3], but the approximation performance was limited due to the lack of training methods considering the neurons. Thus, we propose tendency-based parameter initialization (TBPI) to enhance the approximation of activation function with FS neurons, exploiting temporal dependencies initializing the training parameters.
- Abstract(参考訳): 拡散モデル[1]のような最近のディープニューラルネットワーク(DNN)は高い計算要求に直面している。
このように、スパイキングニューラルネットワーク(SNN)はエネルギー効率のよいニューラルネットワークとして多くの注目を集めている。
しかし、従来のスパイキングニューロン、例えば漏れた統合・発火ニューロンは、Swish [2]のような複雑な非線形活性化関数を正確に表現することはできない。
スパイクニューロンの活性化関数を近似するために, スパイクニューロン (FS) はほとんど提案されなかった [3] が, ニューロンを考慮した訓練方法の欠如により, 近似性能は制限された。
そこで本研究では,FSニューロンによるアクティベーション関数の近似性を高めるための傾向に基づくパラメータ初期化(TBPI)を提案する。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Fast gradient-free activation maximization for neurons in spiking neural networks [5.805438104063613]
このようなループのための効率的な設計のフレームワークを提案する。
トレーニング中の人工ニューロンの最適刺激の変化を追跡する。
この洗練された最適刺激の形成は、分類精度の増大と関連している。
論文 参考訳(メタデータ) (2023-12-28T18:30:13Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Neural network with optimal neuron activation functions based on
additive Gaussian process regression [0.0]
より柔軟なニューロン活性化機能により、より少ない神経細胞や層を使用でき、表現力を向上させることができる。
加算ガウス過程回帰(GPR)は各ニューロンに特異的な最適なニューロン活性化関数を構築するのに有効であることを示す。
ニューラルネットワークパラメータの非線形フィッティングを回避するアプローチも導入されている。
論文 参考訳(メタデータ) (2023-01-13T14:19:17Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Energy-Efficient High-Accuracy Spiking Neural Network Inference Using
Time-Domain Neurons [0.18352113484137625]
本稿では低出力高線形時間領域I&Fニューロン回路を提案する。
提案されたニューロンは、MNIST推論において4.3倍のエラー率をもたらす。
提案したニューロン回路で消費される電力は1ニューロンあたり0.230uWとシミュレートされ、これは既存の電圧領域ニューロンよりも桁違いに低い。
論文 参考訳(メタデータ) (2022-02-04T08:24:03Z) - Improving Spiking Neural Network Accuracy Using Time-based Neurons [0.24366811507669117]
アナログニューロンを用いた低消費電力スパイクニューラルネットワークに基づくニューロモルフィックコンピューティングシステムの研究が注目されている。
技術のスケールダウンに伴い、アナログニューロンはスケールが難しく、電圧ヘッドルーム/ダイナミックレンジの減少と回路の非線形性に悩まされる。
本稿では,28nmプロセスで設計した既存の電流ミラー型電圧ドメインニューロンの非線形挙動をモデル化し,ニューロンの非線形性の影響によりSNN推定精度を著しく劣化させることができることを示す。
本稿では,時間領域のスパイクを処理し,線形性を大幅に向上させる新しいニューロンを提案する。
論文 参考訳(メタデータ) (2022-01-05T00:24:45Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。