論文の概要: Causal Inference from Slowly Varying Nonstationary Processes
- arxiv url: http://arxiv.org/abs/2405.06902v2
- Date: Wed, 29 May 2024 17:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 22:42:17.547486
- Title: Causal Inference from Slowly Varying Nonstationary Processes
- Title(参考訳): 緩やかな非定常過程からの因果推論
- Authors: Kang Du, Yu Xiang,
- Abstract要約: 観測データヒンジからの因果推論は、データ生成機構による原因と効果の非対称性に依存する。
本稿では,時間変化フィルタと定常雑音を用いた新しい構造因果モデルを提案し,非定常性から非対称性を利用して因果同定を行う。
- 参考スコア(独自算出の注目度): 2.3072402651280517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference from observational data following the restricted structural causal models (SCM) framework hinges largely on the asymmetry between cause and effect from the data generating mechanisms, such as non-Gaussianity or non-linearity. This methodology can be adapted to stationary time series, yet inferring causal relationships from nonstationary time series remains a challenging task. In this work, we propose a new class of restricted SCM, via a time-varying filter and stationary noise, and exploit the asymmetry from nonstationarity for causal identification in both bivariate and network settings. We propose efficient procedures by leveraging powerful estimates of the bivariate evolutionary spectra for slowly varying processes. Various synthetic and real datasets that involve high-order and non-smooth filters are evaluated to demonstrate the effectiveness of our proposed methodology.
- Abstract(参考訳): 制限構造因果モデル(SCM)フレームワークによる観測データからの因果推論は、非ガウス性や非線形性などのデータ生成機構による原因と効果の非対称性に大きく依存する。
この手法は定常時系列に適応できるが、非定常時系列から因果関係を推定することは難しい課題である。
本研究では,時間変化フィルタと定常雑音による制約付きSCMを新たに提案し,非定常性から非定常性への非対称性を利用して,二変量およびネットワーク設定の因果同定を行う。
本稿では,2変量進化スペクトルの強力な推定値を利用して,ゆっくりと変化するプロセスに効率的な手順を提案する。
提案手法の有効性を示すために,高次および非滑らかなフィルタを含む各種合成および実データセットの評価を行った。
関連論文リスト
- On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Variational Nonlinear Kalman Filtering with Unknown Process Noise
Covariance [24.23243651301339]
本稿では,近似ベイズ推定原理に基づく非線形状態推定とモデルパラメータの同定手法を提案する。
シミュレーションおよび実世界のデータを用いて,レーダ目標追尾法の性能を検証した。
論文 参考訳(メタデータ) (2023-05-06T03:34:39Z) - Multi-scale Fusion Fault Diagnosis Method Based on Two-Dimensionaliztion
Sequence in Complex Scenarios [0.0]
転がり軸受は回転機械において重要な要素であり、その欠陥は深刻な損傷を引き起こす可能性がある。
異常の早期発見は破滅的な事故を防ぐために不可欠である。
従来のインテリジェントな手法は時系列データを解析するのに用いられてきたが、現実のシナリオでは、センサデータはノイズが多く、時間領域で正確に特徴付けることはできない。
本稿では,産業シナリオに展開するためのマルチスケール機能融合モデルとディープラーニング圧縮技術を用いて,畳み込みニューラルネットワークの改良手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:05:50Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Learning Temporally Causal Latent Processes from General Temporal Data [22.440008291454287]
それらの非線形混合物から時間的因果潜在過程を同定できる2つの証明可能な条件を提案する。
種々のデータセットに対する実験結果から, 時間的因果潜在過程が観測変数から確実に同定されることが示された。
論文 参考訳(メタデータ) (2021-10-11T17:16:19Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Causal Inference Using Linear Time-Varying Filters with Additive Noise [18.35147325731821]
制約構造因果モデルフレームワークを用いた因果推論は、データ生成機構による原因と効果の非対称性に大きく依存する。
データの非定常性を利用して対称性を破ることを提案する。
主な理論的結果は,原因と効果が時間変化フィルタを介して接続された場合,因果方向が汎用ケースで同定可能であることを示している。
論文 参考訳(メタデータ) (2020-12-23T23:35:58Z) - Estimation of Structural Causal Model via Sparsely Mixing Independent
Component Analysis [4.7210697296108926]
非ガウス雑音を持つ線形DAGモデルの新しい推定法を提案する。
提案手法により,因果順序とパラメータを同時に推定できる。
数値実験により,提案手法は既存手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-09-07T13:08:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。