論文の概要: Causal Inference Using Linear Time-Varying Filters with Additive Noise
- arxiv url: http://arxiv.org/abs/2012.13025v2
- Date: Fri, 5 Feb 2021 20:56:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 17:58:14.193043
- Title: Causal Inference Using Linear Time-Varying Filters with Additive Noise
- Title(参考訳): 加算雑音付き線形時変フィルタを用いた因果推論
- Authors: Kang Du and Yu Xiang
- Abstract要約: 制約構造因果モデルフレームワークを用いた因果推論は、データ生成機構による原因と効果の非対称性に大きく依存する。
データの非定常性を利用して対称性を破ることを提案する。
主な理論的結果は,原因と効果が時間変化フィルタを介して接続された場合,因果方向が汎用ケースで同定可能であることを示している。
- 参考スコア(独自算出の注目度): 18.35147325731821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference using the restricted structural causal model framework
hinges largely on the asymmetry between cause and effect from the data
generating mechanisms. For linear non-Gaussian noise models and nonlinear
additive noise models, the asymmetry arises from non-Gaussianity or
nonlinearity, respectively. Despite the fact that this methodology can be
adapted to stationary time series, inferring causal relationships from
nonstationary time series remains a challenging task. In this work, we focus on
slowly-varying nonstationary processes and propose to break the symmetry by
exploiting the nonstationarity of the data. Our main theoretical result shows
that the causal direction is identifiable in generic cases when cause and
effect are connected via a time-varying filter. We propose a causal discovery
procedure by leveraging powerful estimates of the bivariate evolutionary
spectra. Both synthetic and real-world data simulations that involve high-order
and non-smooth filters are provided to demonstrate the effectiveness of our
proposed methodology.
- Abstract(参考訳): 制約構造因果モデルフレームワークを用いた因果推論は、データ生成機構による原因と効果の非対称性に大きく依存する。
線形非ガウシアンノイズモデルと非線形付加ノイズモデルでは、非ガウシアン性または非線形性から非対称性が生じる。
この手法が定常時系列に適応できるという事実にもかかわらず、非定常時系列から因果関係を推定することは難しい課題である。
本研究では,データの非定常性を生かして,非定常な処理を緩やかに行うことに着目し,対称性を破る手法を提案する。
主な理論的結果は,原因と効果が時間変化フィルタを介して接続された場合,因果方向が汎用ケースで同定可能であることを示している。
二変量進化スペクトルの強力な推定を利用して因果的発見手順を提案する。
提案手法の有効性を示すため,高次および非滑らかなフィルタを含む合成および実世界のデータシミュレーションを行った。
関連論文リスト
- Generative Intervention Models for Causal Perturbation Modeling [80.72074987374141]
多くの応用において、システムのメカニズムが外部の摂動によって変更されるかは未定である。
本稿では、これらの摂動特徴を原子間干渉による分布にマッピングする方法を学習する生成的介入モデル(GIM)を提案する。
論文 参考訳(メタデータ) (2024-11-21T10:37:57Z) - Causal Inference from Slowly Varying Nonstationary Processes [2.3072402651280517]
観測データヒンジからの因果推論は、データ生成機構による原因と効果の非対称性に依存する。
本稿では,時間変化フィルタと定常雑音を用いた新しい構造因果モデルを提案し,非定常性から非対称性を利用して因果同定を行う。
論文 参考訳(メタデータ) (2024-05-11T04:15:47Z) - Robust Estimation of Causal Heteroscedastic Noise Models [7.568978862189266]
学生の$t$-distributionは、より小さなサンプルサイズと極端な値で、全体の分布形態を著しく変えることなく、サンプル変数をサンプリングすることの堅牢さで知られている。
我々の経験的評価は、我々の推定器はより堅牢で、合成ベンチマークと実ベンチマークの総合的な性能が向上していることを示している。
論文 参考訳(メタデータ) (2023-12-15T02:26:35Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Variational Nonlinear Kalman Filtering with Unknown Process Noise
Covariance [24.23243651301339]
本稿では,近似ベイズ推定原理に基づく非線形状態推定とモデルパラメータの同定手法を提案する。
シミュレーションおよび実世界のデータを用いて,レーダ目標追尾法の性能を検証した。
論文 参考訳(メタデータ) (2023-05-06T03:34:39Z) - Macroscopic noise amplification by asymmetric dyads in non-Hermitian
optical systems for generative diffusion models [55.2480439325792]
非対称な非エルミートダイアドは、効率的なセンサーと超高速な乱数発生器の候補である。
このような非対称なダイアドからの集積光放射は、機械学習の全光学的退化拡散モデルに効率的に利用できる。
論文 参考訳(メタデータ) (2022-06-24T10:19:36Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
観測データセットからの因果推論は、しばしば共変量の測定と調整に依存する。
このロバストな最適化手法により、広範囲な因果調整法を拡張し、部分的同定を行うことができることを示す。
合成および実データセット全体で、このアプローチは既存の手法よりも高いカバレッジ確率でATEバウンダリを提供する。
論文 参考訳(メタデータ) (2022-02-22T04:24:26Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - On the Role of Entropy-based Loss for Learning Causal Structures with
Continuous Optimization [27.613220411996025]
因果構造学習問題を最小二乗損失を用いた連続最適化問題として定式化する。
ガウス雑音の仮定に違反すると因果方向の同定が妨げられることを示す。
より一般的なエントロピーに基づく損失は、任意の雑音分布下での確率スコアと理論的に一致している。
論文 参考訳(メタデータ) (2021-06-05T08:29:51Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Estimation of Structural Causal Model via Sparsely Mixing Independent
Component Analysis [4.7210697296108926]
非ガウス雑音を持つ線形DAGモデルの新しい推定法を提案する。
提案手法により,因果順序とパラメータを同時に推定できる。
数値実験により,提案手法は既存手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-09-07T13:08:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。