A Machine Learning-based Approach for Solving Recurrence Relations and its use in Cost Analysis of Logic Programs
- URL: http://arxiv.org/abs/2405.06972v2
- Date: Thu, 29 Aug 2024 23:21:57 GMT
- Title: A Machine Learning-based Approach for Solving Recurrence Relations and its use in Cost Analysis of Logic Programs
- Authors: Louis Rustenholz, Maximiliano Klemen, Miguel Ángel Carreira-Perpiñán, Pedro López-García,
- Abstract summary: We develop a novel, general approach for solving arbitrary, constrained recurrence relations.
Our prototype implementation and its experimental evaluation within the context of the CiaoPP system show quite promising results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic static cost analysis infers information about the resources used by programs without actually running them with concrete data, and presents such information as functions of input data sizes. Most of the analysis tools for logic programs (and many for other languages), as CiaoPP, are based on setting up recurrence relations representing (bounds on) the computational cost of predicates, and solving them to find closed-form functions. Such recurrence solving is a bottleneck in current tools: many of the recurrences that arise during the analysis cannot be solved with state-of-the-art solvers, including Computer Algebra Systems (CASs), so that specific methods for different classes of recurrences need to be developed. We address such a challenge by developing a novel, general approach for solving arbitrary, constrained recurrence relations, that uses machine-learning (sparse-linear and symbolic) regression techniques to guess a candidate closed-form function, and a combination of an SMT-solver and a CAS to check if it is actually a solution of the recurrence. Our prototype implementation and its experimental evaluation within the context of the CiaoPP system show quite promising results. Overall, for the considered benchmarks, our approach outperforms state-of-the-art cost analyzers and recurrence solvers, and solves recurrences that cannot be solved by them. Under consideration in Theory and Practice of Logic Programming (TPLP).
Related papers
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Stochastic Q-learning for Large Discrete Action Spaces [79.1700188160944]
In complex environments with discrete action spaces, effective decision-making is critical in reinforcement learning (RL)
We present value-based RL approaches which, as opposed to optimizing over the entire set of $n$ actions, only consider a variable set of actions, possibly as small as $mathcalO(log(n)$)$.
The presented value-based RL methods include, among others, Q-learning, StochDQN, StochDDQN, all of which integrate this approach for both value-function updates and action selection.
arXiv Detail & Related papers (2024-05-16T17:58:44Z) - Deep Generative Symbolic Regression [83.04219479605801]
Symbolic regression aims to discover concise closed-form mathematical equations from data.
Existing methods, ranging from search to reinforcement learning, fail to scale with the number of input variables.
We propose an instantiation of our framework, Deep Generative Symbolic Regression.
arXiv Detail & Related papers (2023-12-30T17:05:31Z) - Solving Recurrence Relations using Machine Learning, with Application to
Cost Analysis [0.0]
We develop a novel, general approach for solving arbitrary, constrained recurrence relations.
Our approach can find closed-form solutions, in a reasonable time, for classes of recurrences that cannot be solved by such a system.
arXiv Detail & Related papers (2023-08-30T08:55:36Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
We propose a new neural-symbolic method to support end-to-end learning using complex queries with provable reasoning capability.
We develop a new dataset containing ten new types of queries with features that have never been considered.
Our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
arXiv Detail & Related papers (2023-04-14T11:35:35Z) - Mutual Information Learned Regressor: an Information-theoretic Viewpoint
of Training Regression Systems [10.314518385506007]
An existing common practice for solving regression problems is the mean square error (MSE) minimization approach.
Recently, Yi et al., proposed a mutual information based supervised learning framework where they introduced a label entropy regularization.
In this paper, we investigate the regression under the mutual information based supervised learning framework.
arXiv Detail & Related papers (2022-11-23T03:43:22Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - Symbolic Regression using Mixed-Integer Nonlinear Optimization [9.638685454900047]
The Symbolic Regression (SR) problem is a hard problem in machine learning.
We propose a hybrid algorithm that combines mixed-integer nonlinear optimization with explicit enumeration.
We show that our algorithm is competitive, for some synthetic data sets, with a state-of-the-art SR software and a recent physics-inspired method called AI Feynman.
arXiv Detail & Related papers (2020-06-11T20:53:17Z) - Machine Learning to Tackle the Challenges of Transient and Soft Errors
in Complex Circuits [0.16311150636417257]
Machine learning models are used to predict accurate per-instance Functional De-Rating data for the full list of circuit instances.
The presented methodology is applied on a practical example and various machine learning models are evaluated and compared.
arXiv Detail & Related papers (2020-02-18T18:38:54Z) - On the Estimation of Complex Circuits Functional Failure Rate by Machine
Learning Techniques [0.16311150636417257]
De-Rating or Vulnerability Factors are a major feature of failure analysis efforts mandated by today's Functional Safety requirements.
New approach is proposed which uses Machine Learning to estimate the Functional De-Rating of individual flip-flops.
arXiv Detail & Related papers (2020-02-18T15:18:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.