Fractals as Pre-training Datasets for Anomaly Detection and Localization
- URL: http://arxiv.org/abs/2405.06980v1
- Date: Sat, 11 May 2024 10:35:42 GMT
- Title: Fractals as Pre-training Datasets for Anomaly Detection and Localization
- Authors: C. I. Ugwu, S. Casarin, O. Lanz,
- Abstract summary: Anomaly detection is crucial in large-scale industrial manufacturing as it helps detect and localise defective parts.
Pre-training feature extractors on large-scale datasets is a popular approach for this task.
We evaluate the performance of eight state-of-the-art methods pre-trained using dynamically generated fractal images.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Anomaly detection is crucial in large-scale industrial manufacturing as it helps detect and localise defective parts. Pre-training feature extractors on large-scale datasets is a popular approach for this task. Stringent data security and privacy regulations and high costs and acquisition time hinder the availability and creation of such large datasets. While recent work in anomaly detection primarily focuses on the development of new methods built on such extractors, the importance of the data used for pre-training has not been studied. Therefore, we evaluated the performance of eight state-of-the-art methods pre-trained using dynamically generated fractal images on the famous benchmark datasets MVTec and VisA. In contrast to existing literature, which predominantly examines the transfer-learning capabilities of fractals, in this study, we compare models pre-trained with fractal images against those pre-trained with ImageNet, without subsequent fine-tuning. Although pre-training with ImageNet remains a clear winner, the results of fractals are promising considering that the anomaly detection task required features capable of discerning even minor visual variations. This opens up the possibility for a new research direction where feature extractors could be trained on synthetically generated abstract datasets reconciling the ever-increasing demand for data in machine learning while circumventing privacy and security concerns.
Related papers
- Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - TAB: Text-Align Anomaly Backbone Model for Industrial Inspection Tasks [12.660226544498023]
We propose a novel framework to adeptly train a backbone model tailored to the manufacturing domain.
Our approach concurrently considers visual and text-aligned embedding spaces for normal and abnormal conditions.
The resulting pre-trained backbone markedly enhances performance in industrial downstream tasks.
arXiv Detail & Related papers (2023-12-15T01:37:29Z) - Proper Reuse of Image Classification Features Improves Object Detection [4.240984948137734]
A common practice in transfer learning is to initialize the downstream model weights by pre-training on a data-abundant upstream task.
Recent works show this is not strictly necessary under longer training regimes and provide recipes for training the backbone from scratch.
We show that an extreme form of knowledge preservation -- freezing the classifier-d backbone -- consistently improves many different detection models.
arXiv Detail & Related papers (2022-04-01T14:44:47Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Deep Structure Learning using Feature Extraction in Trained Projection
Space [0.0]
We introduce a network architecture using a self-adjusting and data dependent version of the Radon-transform (linear data projection), also known as x-ray projection, to enable feature extraction via convolutions in lower-dimensional space.
The resulting framework, named PiNet, can be trained end-to-end and shows promising performance on volumetric segmentation tasks.
arXiv Detail & Related papers (2020-09-01T12:16:55Z) - Unsupervised machine learning via transfer learning and k-means
clustering to classify materials image data [0.0]
This paper demonstrates how to construct, use, and evaluate a high performance unsupervised machine learning system for classifying images.
We use the VGG16 convolutional neural network pre-trained on the ImageNet dataset of natural images to extract feature representations for each micrograph.
The approach achieves $99.4% pm 0.16%$ accuracy, and the resulting model can be used to classify new images without retraining.
arXiv Detail & Related papers (2020-07-16T14:36:04Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
We study how specific design choices in the ImageNet creation process impact the fidelity of the resulting dataset.
Our analysis pinpoints how a noisy data collection pipeline can lead to a systematic misalignment between the resulting benchmark and the real-world task it serves as a proxy for.
arXiv Detail & Related papers (2020-05-22T17:39:16Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.