論文の概要: Designing and Evaluating Dialogue LLMs for Co-Creative Improvised Theatre
- arxiv url: http://arxiv.org/abs/2405.07111v1
- Date: Sat, 11 May 2024 23:19:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 18:18:14.092842
- Title: Designing and Evaluating Dialogue LLMs for Co-Creative Improvised Theatre
- Title(参考訳): コクレーティブ改良劇場における対話型LLMの設計と評価
- Authors: Boyd Branch, Piotr Mirowski, Kory Mathewson, Sophia Ppali, Alexandra Covaci,
- Abstract要約: 本研究では,Edinburgh Festival Fringeで1ヶ月のライブショーで展開されたLarge Language Models(LLMs)について紹介する。
オンザスポット多人数対話の技術的能力と制約について検討する。
我々のHuman-in-the-loop法は、文脈関連応答を生成する上で、これらのLCMの課題を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 48.19823828240628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social robotics researchers are increasingly interested in multi-party trained conversational agents. With a growing demand for real-world evaluations, our study presents Large Language Models (LLMs) deployed in a month-long live show at the Edinburgh Festival Fringe. This case study investigates human improvisers co-creating with conversational agents in a professional theatre setting. We explore the technical capabilities and constraints of on-the-spot multi-party dialogue, providing comprehensive insights from both audience and performer experiences with AI on stage. Our human-in-the-loop methodology underlines the challenges of these LLMs in generating context-relevant responses, stressing the user interface's crucial role. Audience feedback indicates an evolving interest for AI-driven live entertainment, direct human-AI interaction, and a diverse range of expectations about AI's conversational competence and utility as a creativity support tool. Human performers express immense enthusiasm, varied satisfaction, and the evolving public opinion highlights mixed emotions about AI's role in arts.
- Abstract(参考訳): 社会ロボティクスの研究者は、多人数で訓練された会話エージェントに興味を抱いている。
実世界評価の需要が高まり,エディンバラ・フェスティバル・フランジで1ヶ月のライブショーに展開されたLarge Language Models (LLMs) について紹介した。
本研究は,プロの舞台で会話エージェントと共作する人間インプロバイザについて検討する。
ステージ上では、オーディエンスとパフォーマーの両方のAI経験から包括的な洞察を提供する。
我々のHuman-in-the-loop手法は、これらのLCMがコンテキスト関連応答を生成する際の課題を浮き彫りにして、ユーザインタフェースの重要な役割を強調します。
聴衆からのフィードバックは、AI駆動のライブエンターテイメント、直接の人間とAIのインタラクション、AIの会話能力と創造性支援ツールとしてのユーティリティに対するさまざまな期待の高まりを示している。
人間のパフォーマーは、膨大な熱意、さまざまな満足感を示し、進化する世論は、芸術におけるAIの役割に関する様々な感情を強調している。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
大規模言語モデル(LLM)は、コンピュータ、Webブラウザ、ブラウザベースのインターフェースによるインターネット接続を持つ人なら誰でも利用できるようになった。
本稿では,ChatGPTインタフェースにおける対話型フィードバック機能の可能性について検討し,ユーザ入力の形状やイテレーションへの参加について分析する。
論文 参考訳(メタデータ) (2024-08-27T13:50:37Z) - Empathy Through Multimodality in Conversational Interfaces [1.360649555639909]
会話型健康エージェント(CHA)は、感情的なインテリジェンスを組み込むためにテキスト分析を超越するニュアンスなサポートを提供することで、医療を再定義している。
本稿では、豊かなマルチモーダル対話のためのLCMベースのCHAについて紹介する。
マルチモーダルな手がかりを解析することにより、ユーザの感情状態に順応的に解釈し、応答し、文脈的に認識され、共感的に反響する音声応答を提供する。
論文 参考訳(メタデータ) (2024-05-08T02:48:29Z) - Persona Inconstancy in Multi-Agent LLM Collaboration: Conformity, Confabulation, and Impersonation [16.82101507069166]
マルチエージェントAIシステムは、科学的および実践的な応用において、集合的な意思決定をシミュレートするために使用することができる。
我々は、相互協力や議論に携わるAIエージェントのアンサンブルについて、個人の反応やチャットの書き起こしを分析して検討する。
以上の結果から,複数エージェントによる議論が,多面的な視点を反映する集合的AI決定を支援することが示唆された。
論文 参考訳(メタデータ) (2024-05-06T21:20:35Z) - From Persona to Personalization: A Survey on Role-Playing Language Agents [52.783043059715546]
大規模言語モデル(LLM)の最近の進歩はロールプレイング言語エージェント(RPLA)の台頭を後押ししている。
RPLAは、人間の類似性と鮮明なロールプレイングパフォーマンスの素晴らしい感覚を達成します。
彼らは感情的な仲間、インタラクティブなビデオゲーム、パーソナライズされたアシスタント、コピロなど、多くのAI応用を触媒してきた。
論文 参考訳(メタデータ) (2024-04-28T15:56:41Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects [100.75759050696355]
本稿では,対話エージェントの多種多様な対話における能動性に関する顕著な問題と先進的な設計について概説する。
我々は、現実世界のアプリケーションのニーズを満たすが、将来もっと研究に焦点を当てる必要がある課題について議論する。
論文 参考訳(メタデータ) (2023-05-04T11:38:49Z) - Improving Grounded Language Understanding in a Collaborative Environment
by Interacting with Agents Through Help Feedback [42.19685958922537]
我々は、人間とAIのコラボレーションは対話的であり、人間がAIエージェントの作業を監視し、エージェントが理解し活用できるフィードバックを提供するべきだと論じている。
本研究では, IGLUコンペティションによって定義された課題である, マイニングクラフトのような世界における対話型言語理解タスクを用いて, これらの方向を探索する。
論文 参考訳(メタデータ) (2023-04-21T05:37:59Z) - Human in the Loop for Machine Creativity [0.0]
我々は、創造的アプリケーションのための既存のHuman-in-the-loop(HITL)アプローチを概念化する。
モデル,インターフェース,機械の創造性に対する長期的影響について検討し,考察する。
テキスト,視覚,音,その他の情報を結合し,人や環境の自動解析を行うマルチモーダルHITLプロセスを提案する。
論文 参考訳(メタデータ) (2021-10-07T15:42:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。