論文の概要: Human in the Loop for Machine Creativity
- arxiv url: http://arxiv.org/abs/2110.03569v1
- Date: Thu, 7 Oct 2021 15:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 15:32:36.256497
- Title: Human in the Loop for Machine Creativity
- Title(参考訳): マシンクリエイティビティのためのループの中の人間
- Authors: Neo Christopher Chung
- Abstract要約: 我々は、創造的アプリケーションのための既存のHuman-in-the-loop(HITL)アプローチを概念化する。
モデル,インターフェース,機械の創造性に対する長期的影響について検討し,考察する。
テキスト,視覚,音,その他の情報を結合し,人や環境の自動解析を行うマルチモーダルHITLプロセスを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) is increasingly utilized in synthesizing
visuals, texts, and audio. These AI-based works, often derived from neural
networks, are entering the mainstream market, as digital paintings, songs,
books, and others. We conceptualize both existing and future human-in-the-loop
(HITL) approaches for creative applications and to develop more expressive,
nuanced, and multimodal models. Particularly, how can our expertise as curators
and collaborators be encoded in AI models in an interactive manner? We examine
and speculate on long term implications for models, interfaces, and machine
creativity. Our selection, creation, and interpretation of AI art inherently
contain our emotional responses, cultures, and contexts. Therefore, the
proposed HITL may help algorithms to learn creative processes that are much
harder to codify or quantify. We envision multimodal HITL processes, where
texts, visuals, sounds, and other information are coupled together, with
automated analysis of humans and environments. Overall, these HITL approaches
will increase interaction between human and AI, and thus help the future AI
systems to better understand our own creative and emotional processes.
- Abstract(参考訳): 人工知能(AI)は、視覚、テキスト、オーディオの合成にますます活用されている。
これらのaiベースの作品は、しばしばニューラルネットワークから派生したもので、デジタル絵画、歌、本など、主流市場に入ってきています。
我々は、創造的アプリケーションのための既存および将来のヒューマン・イン・ザ・ループ(hitl)アプローチを概念化し、より表現力があり、ニュアンスがあり、マルチモーダルなモデルを開発する。
特に、キュレーターや共同研究者としての私たちの専門知識を、インタラクティブな方法でAIモデルにエンコードするにはどうすればよいのか?
モデル,インターフェース,機械の創造性に対する長期的影響について検討し,考察する。
AIアートの選択、創造、解釈には、本質的に感情的な反応、文化、文脈が含まれています。
したがって、提案されたHITLは、符号化や定量化がより難しい創造的プロセスの学習を支援する可能性がある。
我々は、テキスト、視覚、音声、その他の情報を結合したマルチモーダルhitlプロセスと、人間と環境の自動分析を想定する。
全体として、これらのHITLアプローチは人間とAIの相互作用を高め、将来のAIシステムが私たちの創造的および感情的なプロセスをよりよく理解するのに役立つ。
関連論文リスト
- Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Grasping AI: experiential exercises for designers [8.95562850825636]
本稿では,AIシステムにおけるインタラクション・アベイランス,ユニークなリレーショナル可能性,より広範な社会的影響を探求し,考察する手法について検討する。
比喩や制定に関する演習は、トレーニングや学習、プライバシーと同意、自律性、エージェンシーをより具体的になる。
論文 参考訳(メタデータ) (2023-10-02T15:34:08Z) - Agency and legibility for artists through Experiential AI [12.941266914933454]
Experiential AIは、AIを具体的で明示的なものにするという課題に対処する、新たな研究分野である。
本稿では,創造的データ探索を目的とした経験的AIシステムの実証事例について報告する。
実験的なAIがアーティストの妥当性とエージェンシーを高める方法について論じる。
論文 参考訳(メタデータ) (2023-06-04T11:00:07Z) - AI and the creative realm: A short review of current and future
applications [2.1320960069210484]
本研究は創造性と人工知能(AI)の概念を探求する。
より洗練されたAIモデルの開発と人間とコンピュータの相互作用ツールの普及により、芸術的創造におけるAIの新たな可能性が高まっている。
論文 参考訳(メタデータ) (2023-06-01T12:28:08Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
我々は世界モデルと予測符号化の2つの概念に焦点を当てる。
神経科学において、予測符号化は、脳がその入力を継続的に予測し、その環境における自身のダイナミクスと制御行動のモデル化に適応するように提案する。
論文 参考訳(メタデータ) (2023-01-14T06:38:14Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Artificial Intelligence in the Creative Industries: A Review [2.657505380055164]
本稿では,創造産業の文脈における人工知能(AI)技術と応用の現状を概観する。
私たちはクリエイティブなアプリケーションを、AIテクノロジの使用方法に関連する5つのグループに分類します。
これらの分野において、この急速に進歩する技術の成功と限界について検討する。
論文 参考訳(メタデータ) (2020-07-24T07:29:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。