論文の概要: InsightNet: Structured Insight Mining from Customer Feedback
- arxiv url: http://arxiv.org/abs/2405.07195v1
- Date: Sun, 12 May 2024 07:40:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 17:57:54.705701
- Title: InsightNet: Structured Insight Mining from Customer Feedback
- Title(参考訳): InsightNet: 顧客からのフィードバックから構造化されたインサイトマイニング
- Authors: Sandeep Sricharan Mukku, Manan Soni, Jitenkumar Rana, Chetan Aggarwal, Promod Yenigalla, Rashmi Patange, Shyam Mohan,
- Abstract要約: 顧客レビューから構造化された洞察を自動的に抽出する新しいアプローチであるInsightNetを提案する。
私たちのエンドツーエンドの機械学習フレームワークは、特定トピックの構造の欠如、非標準アスペクト名、豊富なトレーニングデータの欠如など、現在のソリューションの限界を克服するために設計されています。
我々は、InsightNetがマルチラベルのトピック分類において現在の最先端手法より優れていることを実証的に証明し、F1スコアが0.85となり、前回のベストスコアよりも11%のF1スコアが向上した。
- 参考スコア(独自算出の注目度): 4.328794168435999
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose InsightNet, a novel approach for the automated extraction of structured insights from customer reviews. Our end-to-end machine learning framework is designed to overcome the limitations of current solutions, including the absence of structure for identified topics, non-standard aspect names, and lack of abundant training data. The proposed solution builds a semi-supervised multi-level taxonomy from raw reviews, a semantic similarity heuristic approach to generate labelled data and employs a multi-task insight extraction architecture by fine-tuning an LLM. InsightNet identifies granular actionable topics with customer sentiments and verbatim for each topic. Evaluations on real-world customer review data show that InsightNet performs better than existing solutions in terms of structure, hierarchy and completeness. We empirically demonstrate that InsightNet outperforms the current state-of-the-art methods in multi-label topic classification, achieving an F1 score of 0.85, which is an improvement of 11% F1-score over the previous best results. Additionally, InsightNet generalises well for unseen aspects and suggests new topics to be added to the taxonomy.
- Abstract(参考訳): 顧客レビューから構造化された洞察を自動的に抽出する新しいアプローチであるInsightNetを提案する。
私たちのエンドツーエンドの機械学習フレームワークは、特定トピックの構造の欠如、非標準アスペクト名、豊富なトレーニングデータの欠如など、現在のソリューションの限界を克服するために設計されています。
提案手法は,ラベル付きデータを生成する意味的類似性ヒューリスティックアプローチである生のレビューから半教師付きマルチレベル分類法を構築し,LLMを微調整してマルチタスクの洞察抽出アーキテクチャを採用する。
InsightNetは、顧客の感情と各トピックに対する口頭で、より粒度の細かいアクション可能なトピックを特定する。
実際の顧客レビューデータによる評価では、InsightNetは構造、階層、完全性の観点から既存のソリューションよりも優れたパフォーマンスを示している。
我々は、InsightNetがマルチラベルのトピック分類において現在の最先端手法より優れていることを実証的に証明し、F1スコアが0.85となり、前回のベストスコアよりも11%のF1スコアが向上した。
さらにInsightNetは、目に見えない側面を一般化し、分類に新たなトピックを追加することを提案している。
関連論文リスト
- Partial Multi-View Clustering via Meta-Learning and Contrastive Feature Alignment [13.511433241138702]
部分的マルチビュークラスタリング (PVC) は、実世界のアプリケーションにおけるデータ分析における実用的な研究課題である。
既存のクラスタリング手法は、不完全なビューを効果的に扱うのに苦労し、サブ最適クラスタリング性能に繋がる。
非完全多視点データにおける潜在的特徴の一貫性を最大化することを目的とした、コントラスト学習に基づく新しい双対最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T19:16:01Z) - HIP: Hierarchical Point Modeling and Pre-training for Visual Information Extraction [24.46493675079128]
OCRに依存した手法はオフラインのOCRエンジンに依存し、OCRに依存しない手法は解釈性に欠ける出力や幻覚的内容を含む出力を生成する。
我々は, 階層的視点をモデルとしたHIPを提案し, エンドツーエンドのVIEタスクの階層的性質をよりよく適合させる。
具体的には、このような階層的な点は柔軟に符号化され、その後所望のテキスト書き起こし、地域の中心、エンティティのカテゴリにデコードされる。
論文 参考訳(メタデータ) (2024-11-02T05:00:13Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
局所・グローバル構造保存を用いた効率的なマルチビューグラフクラスタリング(EMVGC-LG)という,アンカーベースのマルチビューグラフクラスタリングフレームワークを提案する。
具体的には、EMVGC-LGがクラスタリング品質を向上させるために、アンカー構築とグラフ学習を共同で最適化する。
さらに、EMVGC-LGはサンプル数に関する既存のAMVGCメソッドの線形複雑性を継承する。
論文 参考訳(メタデータ) (2023-08-31T12:12:30Z) - Semi-supervised multi-view concept decomposition [30.699496411869834]
概念因子化(CF)は、マルチビュークラスタリングタスクにおいて優れた性能を示している。
そこで我々は,SMVCFという,新しい半教師付き多視点概念分解モデルを提案する。
SMVCFの性能を評価するために,4つの多様なデータセットの実験を行った。
論文 参考訳(メタデータ) (2023-07-03T10:50:44Z) - Multi-View Class Incremental Learning [57.14644913531313]
マルチビュー学習(MVL)は、下流タスクのパフォーマンスを改善するためにデータセットの複数の視点から情報を統合することで大きな成功を収めている。
本稿では,複数視点クラスインクリメンタルラーニング(MVCIL)と呼ばれる新しいパラダイムについて考察する。
論文 参考訳(メタデータ) (2023-06-16T08:13:41Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NERモデルは標準のNERベンチマークで有望な性能を達成した。
近年の研究では、従来のアプローチはエンティティ参照情報に過度に依存し、OoV(out-of-vocabulary)エンティティ認識の性能が劣っていることが示されている。
我々は、情報理論の観点からこの問題を改善するための新しいNER学習フレームワークであるMINERを提案する。
論文 参考訳(メタデータ) (2022-04-09T05:18:20Z) - SuperNet in Neural Architecture Search: A Taxonomic Survey [14.037182039950505]
このサーベイは、ウェイトシェアリングを使用して、すべてのアーキテクチャをサブモデルとして組み立てるニューラルネットワークを構築するスーパーネット最適化に焦点を当てている。
データ側最適化、低ランク相関緩和、多数のデプロイメントシナリオに対するトランスファー可能なNASなどです。
論文 参考訳(メタデータ) (2022-04-08T08:29:52Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。