Enhancing Decision-Making in Optimization through LLM-Assisted Inference: A Neural Networks Perspective
- URL: http://arxiv.org/abs/2405.07212v1
- Date: Sun, 12 May 2024 08:22:53 GMT
- Title: Enhancing Decision-Making in Optimization through LLM-Assisted Inference: A Neural Networks Perspective
- Authors: Gaurav Singh, Kavitesh Kumar Bali,
- Abstract summary: This paper explores the seamless integration of Generative AI (GenAI) and Evolutionary Algorithms (EAs)
Focusing on the transformative role of Large Language Models (LLMs), our study investigates the potential of LLM-Assisted Inference to automate and enhance decision-making processes.
- Score: 1.0420394952839245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the seamless integration of Generative AI (GenAI) and Evolutionary Algorithms (EAs) within the domain of large-scale multi-objective optimization. Focusing on the transformative role of Large Language Models (LLMs), our study investigates the potential of LLM-Assisted Inference to automate and enhance decision-making processes. Specifically, we highlight its effectiveness in illuminating key decision variables in evolutionarily optimized solutions while articulating contextual trade-offs. Tailored to address the challenges inherent in inferring complex multi-objective optimization solutions at scale, our approach emphasizes the adaptive nature of LLMs, allowing them to provide nuanced explanations and align their language with diverse stakeholder expertise levels and domain preferences. Empirical studies underscore the practical applicability and impact of LLM-Assisted Inference in real-world decision-making scenarios.
Related papers
- Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Optimal Decision Making Through Scenario Simulations Using Large Language Models [0.0]
Large Language Models (LLMs) have transformed how complex problems are approached and solved.
This paper proposes an innovative approach to bridge this capability gap.
By enabling LLMs to request multiple potential options and their respective parameters from users, our system introduces a dynamic framework.
This function is designed to analyze the provided options, simulate potential outcomes, and determine the most advantageous solution.
arXiv Detail & Related papers (2024-07-09T01:23:09Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
We propose an algorithmic framework that fine-tunes vision-language models (VLMs) with reinforcement learning (RL)
Our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning.
We demonstrate that our proposed framework enhances the decision-making capabilities of VLM agents across various tasks.
arXiv Detail & Related papers (2024-05-16T17:50:19Z) - When Large Language Model Meets Optimization [7.822833805991351]
Large language models (LLMs) facilitate intelligent modeling and strategic decision-making in optimization.
This review outlines the progress and potential of combining LLMs with optimization algorithms.
arXiv Detail & Related papers (2024-05-16T13:54:37Z) - From Large Language Models and Optimization to Decision Optimization
CoPilot: A Research Manifesto [2.4981381729038743]
We propose research at the intersection of Large Language Models and optimization to create a Decision Optimization CoPilot (DOCP)
DOCP is an AI tool designed to assist any decision maker, interacting in natural language to grasp the business problem, subsequently formulating and solving the corresponding optimization model.
We show that a) LLMs already provide substantial novel capabilities relevant to a DOCP, and b. major research challenges remain to be addressed.
arXiv Detail & Related papers (2024-02-26T03:10:11Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
Agent-based models (ABMs) stand as an essential paradigm for proposing and validating hypothetical solutions or policies.
Large language models (LLMs) encapsulating cross-domain knowledge and programming proficiency could potentially alleviate the difficulty of this process.
We present SAGE, a general solution-oriented ABM generation framework designed for automatic modeling and generating solutions for targeted problems.
arXiv Detail & Related papers (2024-02-04T07:59:06Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.