論文の概要: Explainable Convolutional Neural Networks for Retinal Fundus Classification and Cutting-Edge Segmentation Models for Retinal Blood Vessels from Fundus Images
- arxiv url: http://arxiv.org/abs/2405.07338v1
- Date: Sun, 12 May 2024 17:21:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 15:24:35.435702
- Title: Explainable Convolutional Neural Networks for Retinal Fundus Classification and Cutting-Edge Segmentation Models for Retinal Blood Vessels from Fundus Images
- Title(参考訳): 眼底画像からの網膜血管の網膜基底分類と切削エッジ分割モデルのための説明可能な畳み込みニューラルネットワーク
- Authors: Fatema Tuj Johora Faria, Mukaffi Bin Moin, Pronay Debnath, Asif Iftekher Fahim, Faisal Muhammad Shah,
- Abstract要約: 眼底画像における網膜血管の検査による早期診断の重要領域に焦点を当てた研究。
基礎画像解析の研究は,8つの事前学習CNNモデルを用いたディープラーニングに基づく分類を進歩させる。
本研究では,Grad-CAM,Grad-CAM++,Score-CAM,Faster Score-CAM,Layer CAMなどの説明可能なAI技術を利用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our research focuses on the critical field of early diagnosis of disease by examining retinal blood vessels in fundus images. While automatic segmentation of retinal blood vessels holds promise for early detection, accurate analysis remains challenging due to the limitations of existing methods, which often lack discrimination power and are susceptible to influences from pathological regions. Our research in fundus image analysis advances deep learning-based classification using eight pre-trained CNN models. To enhance interpretability, we utilize Explainable AI techniques such as Grad-CAM, Grad-CAM++, Score-CAM, Faster Score-CAM, and Layer CAM. These techniques illuminate the decision-making processes of the models, fostering transparency and trust in their predictions. Expanding our exploration, we investigate ten models, including TransUNet with ResNet backbones, Attention U-Net with DenseNet and ResNet backbones, and Swin-UNET. Incorporating diverse architectures such as ResNet50V2, ResNet101V2, ResNet152V2, and DenseNet121 among others, this comprehensive study deepens our insights into attention mechanisms for enhanced fundus image analysis. Among the evaluated models for fundus image classification, ResNet101 emerged with the highest accuracy, achieving an impressive 94.17%. On the other end of the spectrum, EfficientNetB0 exhibited the lowest accuracy among the models, achieving a score of 88.33%. Furthermore, in the domain of fundus image segmentation, Swin-Unet demonstrated a Mean Pixel Accuracy of 86.19%, showcasing its effectiveness in accurately delineating regions of interest within fundus images. Conversely, Attention U-Net with DenseNet201 backbone exhibited the lowest Mean Pixel Accuracy among the evaluated models, achieving a score of 75.87%.
- Abstract(参考訳): 本研究は,眼底画像における網膜血管検査による早期診断の重要領域に焦点を当てた。
網膜血管の自動セグメンテーションは早期発見を約束するが、既存の方法の限界のために正確な分析は困難であり、しばしば識別能力が欠如しており、病理領域の影響を受けやすい。
基礎画像解析の研究は,8つの事前学習CNNモデルを用いたディープラーニングに基づく分類を進歩させる。
本研究では,Grad-CAM,Grad-CAM++,Score-CAM,Faster Score-CAM,Layer CAMなどの説明可能なAI技術を利用する。
これらのテクニックは、モデルの意思決定プロセスを照らし、透明性を促進し、予測に対する信頼を高める。
調査を拡大し、ResNetバックボーンを使用したTransUNet、DenseNetとResNetバックボーンによるAtention U-Net、Swin-UNETを含む10のモデルを調査しました。
ResNet50V2、ResNet101V2、ResNet152V2、DenseNet121などの多様なアーキテクチャを組み込んだ総合的研究により、ファンドス画像解析の強化のための注意機構に関する洞察を深めることができた。
基礎画像分類の評価モデルのうち、ResNet101は最高精度で登場し、94.17%を達成した。
一方、EfficientNetB0はモデルの中で最も精度が低く、88.33%のスコアを得た。
さらに、眼底画像セグメンテーションの分野では、Swin-Unetは86.19%の平均画素精度を示し、眼底画像内の関心領域を正確に記述する効果を示した。
逆に、Attention U-Net with DenseNet201 backboneは評価されたモデルの中で最も低い平均画素精度を示し、スコアは75.87%に達した。
関連論文リスト
- Comparative Analysis of Transfer Learning Models for Breast Cancer Classification [10.677937909900486]
本研究は, 病理組織学的スライドにおいて, 浸潤性直腸癌 (IDC) と非IDCを区別する深層学習モデルの効率について検討した。
ResNet-50, DenseNet-121, ResNeXt-50, Vision Transformer (ViT), GoogLeNet (Inception v3), EfficientNet, MobileNet, SqueezeNet。
論文 参考訳(メタデータ) (2024-08-29T18:49:32Z) - Leveraging Spatial and Semantic Feature Extraction for Skin Cancer Diagnosis with Capsule Networks and Graph Neural Networks [0.0]
本研究では,グラフニューラルネットワーク(GNN)とCapsule Networksを統合して,分類性能を向上させるという,革新的なアプローチを提案する。
本稿では,Tiny Pyramid Vision GNN(Tiny Pyramid ViG)アーキテクチャをCapsule Networkに組み込んで評価・拡張することに焦点を当てた。
75回のトレーニングの後、我々のモデルは89.23%と95.52%に達し、既存のベンチマークを上回った。
論文 参考訳(メタデータ) (2024-03-18T17:47:39Z) - Analysis of the Two-Step Heterogeneous Transfer Learning for Laryngeal Blood Vessel Classification: Issue and Improvement [8.7937485450551]
本研究は喉頭病変分類のための2段階ヘテロジニアストランスファーラーニング(THTL)のパイオニアである。
中間領域は糖尿病網膜症カラー・ファンドス画像,意味的には非同一であるが血管像である。
本稿では、SWFT(Step-Wise Fine-Tuning)と呼ばれるTHTLの微調整戦略を改良し、ResNetモデルに適用する。
論文 参考訳(メタデータ) (2024-02-29T09:52:39Z) - Comparative Analysis of Deep Convolutional Neural Networks for Detecting Medical Image Deepfakes [0.0]
本稿では,13種類の最新のDeep Convolutional Neural Network(DCNN)モデルについて総合評価を行った。
ResNet50V2は精度と特異性に優れており、DenseNet169はその正確さ、リコール、F1スコアで区別されている。
また,DenseNetモデルとEfficientNetモデルの両方において,検討対象のDCNN間の遅延空間分離性の評価を行った。
論文 参考訳(メタデータ) (2024-01-08T16:37:22Z) - Comparative analysis of deep learning approaches for AgNOR-stained
cytology samples interpretation [52.77024349608834]
本稿では, 深層学習手法を用いて, 好気性ヌクレオラオーガナイザ領域 (AgNOR) 染色スライダを解析する方法を提案する。
以上の結果から,バックボーンとしてResNet-18やResNet-34を用いたU-Netを用いたセマンティックセマンティックセマンティックセマンティクスは類似した結果を示す。
最も優れたモデルは、それぞれ0.83、0.92、0.99の核、クラスター、衛星のIoUを示す。
論文 参考訳(メタデータ) (2022-10-19T15:15:32Z) - Osteoporosis Prescreening using Panoramic Radiographs through a Deep
Convolutional Neural Network with Attention Mechanism [65.70943212672023]
注意モジュールを持つディープ畳み込みニューラルネットワーク(CNN)はパノラマX線写真上で骨粗しょう症を検出することができる。
49歳から60歳までの70種類のパノラマX線写真(PR)のデータセットを用いて検討した。
論文 参考訳(メタデータ) (2021-10-19T00:03:57Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Exploration of Interpretability Techniques for Deep COVID-19
Classification using Chest X-ray Images [10.01138352319106]
5種類のディープラーニングモデル(ResNet18、ResNet34、InceptionV3、InceptionResNetV2、DenseNet161)とそれらのEnsembleは、Chest X-Ray画像を用いて、新型コロナウイルス、肺炎、健康な被験者を分類するために使用されている。
新型コロナウイルスの分類における平均的なMicro-F1スコアは0.66から0.875の範囲で、ネットワークモデルのアンサンブルは0.89である。
論文 参考訳(メタデータ) (2020-06-03T22:55:53Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。