論文の概要: Leveraging Spatial and Semantic Feature Extraction for Skin Cancer Diagnosis with Capsule Networks and Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2403.12009v2
- Date: Tue, 19 Mar 2024 07:11:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 19:11:08.265123
- Title: Leveraging Spatial and Semantic Feature Extraction for Skin Cancer Diagnosis with Capsule Networks and Graph Neural Networks
- Title(参考訳): カプセルネットワークとグラフニューラルネットワークを用いた皮膚癌診断のための空間的特徴抽出と意味的特徴抽出
- Authors: K. P. Santoso, R. V. H. Ginardi, R. A. Sastrowardoyo, F. A. Madany,
- Abstract要約: 本研究では,グラフニューラルネットワーク(GNN)とCapsule Networksを統合して,分類性能を向上させるという,革新的なアプローチを提案する。
本稿では,Tiny Pyramid Vision GNN(Tiny Pyramid ViG)アーキテクチャをCapsule Networkに組み込んで評価・拡張することに焦点を当てた。
75回のトレーニングの後、我々のモデルは89.23%と95.52%に達し、既存のベンチマークを上回った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the realm of skin lesion image classification, the intricate spatial and semantic features pose significant challenges for conventional Convolutional Neural Network (CNN)-based methodologies. These challenges are compounded by the imbalanced nature of skin lesion datasets, which hampers the ability of models to learn minority class features effectively. Despite augmentation strategies, such as those using Generative Adversarial Networks (GANs), previous attempts have not fully addressed these complexities. This study introduces an innovative approach by integrating Graph Neural Networks (GNNs) with Capsule Networks to enhance classification performance. GNNs, known for their proficiency in handling graph-structured data, offer an advanced mechanism for capturing complex patterns and relationships beyond the capabilities of traditional CNNs. Capsule Networks further contribute by providing superior recognition of spatial hierarchies within images. Our research focuses on evaluating and enhancing the Tiny Pyramid Vision GNN (Tiny Pyramid ViG) architecture by incorporating it with a Capsule Network. This hybrid model was applied to the MNIST:HAM10000 dataset, a comprehensive skin lesion dataset designed for benchmarking classification models. After 75 epochs of training, our model achieved a significant accuracy improvement, reaching 89.23% and 95.52%, surpassing established benchmarks such as GoogLeNet (83.94%), InceptionV3 (86.82%), MobileNet V3 (89.87%), EfficientNet-B7 (92.07%), ResNet18 (92.22%), ResNet34 (91.90%), ViT-Base (73.70%), and IRv2-SA (93.47%) on the same dataset. This outcome underscores the potential of our approach in overcoming the inherent challenges of skin lesion classification, contributing to the advancement of image-based diagnosis in dermatology.
- Abstract(参考訳): 皮膚病変画像分類の分野では、複雑な空間的特徴と意味的特徴は、従来の畳み込みニューラルネットワーク(CNN)に基づく手法において重要な課題となっている。
これらの課題は、モデルが少数民族の特徴を効果的に学習する能力を阻害する皮膚病変データセットの不均衡の性質によって複雑化されている。
GAN(Generative Adversarial Networks)のような拡張戦略にもかかわらず、以前の試みはこれらの複雑さを完全には解決していない。
本研究では,グラフニューラルネットワーク(GNN)とCapsule Networksを統合して,分類性能を向上させるという,革新的なアプローチを提案する。
グラフ構造化データを扱う能力で知られているGNNは、従来のCNNの能力を超えた複雑なパターンや関係をキャプチャする高度なメカニズムを提供する。
カプセルネットワークは、画像内の空間階層の優れた認識を提供することによって、さらに貢献する。
本稿では,Tiny Pyramid Vision GNN(Tiny Pyramid ViG)アーキテクチャをCapsule Networkに組み込んで評価・拡張することに焦点を当てた。
このハイブリッドモデルは、分類モデルのベンチマーク用に設計された総合的な皮膚病変データセットであるMNIST:HAM10000データセットに適用された。
75回のトレーニングの後、我々のモデルは89.23%、95.52%に到達し、GoogLeNet (83.94%)、InceptionV3 (86.82%)、MobileNet V3 (89.87%)、EfficientNet-B7 (92.07%)、ResNet18 (92.22%)、ResNet34 (91.90%)、ViT-Base (73.70%)、IRv2-SA (93.47%)といった既存のベンチマークを上回った。
この結果から,皮膚病変分類の課題を克服し,皮膚科における画像診断の進歩に寄与する可能性が示唆された。
関連論文リスト
- CapsuleNet: A Deep Learning Model To Classify GI Diseases Using EfficientNet-b7 [1.2499537119440245]
Capsule Vision 2024 Challengeのために開発された深層学習モデルであるCapsuleNetについて述べる。
我々のモデルは、事前訓練されたEfficientNet-b7バックボーンを活用し、分類のための追加レイヤを調整し、PRELUアクティベーション関数で最適化する。
以上の結果から,CapsuleNetのようなCNNベースのモデルでは,特に推定時間が重要な因子である場合,GIトラクション病の分類に有効な解が得られることが示唆された。
論文 参考訳(メタデータ) (2024-10-24T20:43:47Z) - Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on Chemical Structure [53.76752789814785]
DumplingGNNは、化学構造に基づいてADCペイロードのアクティビティを予測するために特別に設計された、ハイブリッドなグラフニューラルネットワークアーキテクチャである。
DNAトポイソメラーゼIインヒビターに着目した包括的ADCペイロードデータセットで評価を行った。
特別なADCペイロードデータセットに対して、例外的な精度(91.48%)、感度95.08%)、特異性(97.54%)を示す。
論文 参考訳(メタデータ) (2024-09-23T17:11:04Z) - Hard-Attention Gates with Gradient Routing for Endoscopic Image Computing [3.146247125118741]
本稿では,動的特徴選択のためのFeatureSelection Gates (FSG) やHard-Attention Gates (HAG) を紹介する。
この技術は、スパース接続を促進することにより、畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)を強化することを目的としている。
本稿では,HAGを拡張したネットワークが,ポリプサイズに関連する二分分類タスクと三分分類タスクの両方において,性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-07-05T10:20:24Z) - Explainable Convolutional Neural Networks for Retinal Fundus Classification and Cutting-Edge Segmentation Models for Retinal Blood Vessels from Fundus Images [0.0]
眼底画像における網膜血管の検査による早期診断の重要領域に焦点を当てた研究。
基礎画像解析の研究は,8つの事前学習CNNモデルを用いたディープラーニングに基づく分類を進歩させる。
本研究では,Grad-CAM,Grad-CAM++,Score-CAM,Faster Score-CAM,Layer CAMなどの説明可能なAI技術を利用する。
論文 参考訳(メタデータ) (2024-05-12T17:21:57Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
本稿では,重要なグラフノード間の接続を強く表現するために,RGBチャネルの特徴値の相互接続性を活用し,GNNとエッジ畳み込みを組み合わせた新しいモデルを提案する。
提案モデルでは,最新のDeep Neural Networks (DNN) と同等に動作するが,1000倍のパラメータが減少し,トレーニング時間とデータ要求が短縮される。
論文 参考訳(メタデータ) (2023-07-24T13:39:21Z) - CoNIC Challenge: Pushing the Frontiers of Nuclear Detection,
Segmentation, Classification and Counting [46.45578907156356]
我々は、核分裂と細胞組成を評価するために、その種の最大の利用可能なデータセットを用いて、コミュニティ全体の課題をセットアップする。
大腸組織1,658枚の全スライディング画像を用いて,トップパフォーマンスモデルに基づく広範囲な組織解析を行った。
腫瘍微小環境において,核および好酸球が重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2023-03-11T01:21:13Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
本稿では,特定の患者に限られた発作サンプルから迅速に適応できるパーソナライズされた発作検出・分類フレームワークを提案する。
トレーニング患者の集合からグローバルモデルを学ぶメタGNNベースの分類器を訓練する。
本手法は, 未確認患者20回に限って, 精度82.7%, F1スコア82.08%を達成し, ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-11-01T14:12:58Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Evaluation of Big Data based CNN Models in Classification of Skin
Lesions with Melanoma [7.919213739992465]
このアーキテクチャは、畳み込み型ニューラルネットワークに基づいており、新しいCNNモデルを用いて評価され、既存のCNNモデルの再訓練が行われた。
最高の性能は、修正版のResNet-50畳み込みニューラルネットワークを93.89%の精度で再訓練することで達成された。
論文 参考訳(メタデータ) (2020-07-10T15:39:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。