論文の概要: CaFA: Global Weather Forecasting with Factorized Attention on Sphere
- arxiv url: http://arxiv.org/abs/2405.07395v1
- Date: Sun, 12 May 2024 23:18:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 15:14:45.270401
- Title: CaFA: Global Weather Forecasting with Factorized Attention on Sphere
- Title(参考訳): CaFA:地球規模の気象予報, 球面上の因子的注意
- Authors: Zijie Li, Anthony Zhou, Saurabh Patil, Amir Barati Farimani,
- Abstract要約: 本稿では, この問題を緩和するために, 球面測地に適した因子化アテンションモデルを提案する。
提案モデルの1.5円および0-7日のリードタイムにおける決定論的予測精度は、最先端のデータ駆動型機械学習天気予報モデルと同等である。
- 参考スコア(独自算出の注目度): 7.687215328455751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate weather forecasting is crucial in various sectors, impacting decision-making processes and societal events. Data-driven approaches based on machine learning models have recently emerged as a promising alternative to numerical weather prediction models given their potential to capture physics of different scales from historical data and the significantly lower computational cost during the prediction stage. Renowned for its state-of-the-art performance across diverse domains, the Transformer model has also gained popularity in machine learning weather prediction. Yet applying Transformer architectures to weather forecasting, particularly on a global scale is computationally challenging due to the quadratic complexity of attention and the quadratic increase in spatial points as resolution increases. In this work, we propose a factorized-attention-based model tailored for spherical geometries to mitigate this issue. More specifically, it utilizes multi-dimensional factorized kernels that convolve over different axes where the computational complexity of the kernel is only quadratic to the axial resolution instead of overall resolution. The deterministic forecasting accuracy of the proposed model on $1.5^\circ$ and 0-7 days' lead time is on par with state-of-the-art purely data-driven machine learning weather prediction models. We also showcase the proposed model holds great potential to push forward the Pareto front of accuracy-efficiency for Transformer weather models, where it can achieve better accuracy with less computational cost compared to Transformer based models with standard attention.
- Abstract(参考訳): 正確な天気予報は様々な分野において重要であり、意思決定プロセスや社会イベントに影響を及ぼす。
機械学習モデルに基づくデータ駆動型アプローチは、歴史的データから異なるスケールの物理を捉え、予測段階の計算コストを大幅に削減する可能性から、数値天気予報モデルに代わる有望な選択肢として最近登場した。
さまざまなドメインにわたる最先端のパフォーマンスで有名だが、Transformerモデルは機械学習の天気予報にも人気がある。
しかし、特に世界規模での天気予報にトランスフォーマーアーキテクチャを適用することは、注意の2次複雑さと解像度が増大するにつれて空間点の2次増加のため、計算的に困難である。
本研究では, この問題を緩和するために, 球面測地に適した分解アテンションモデルを提案する。
より具体的には、カーネルの計算複雑性が全分解能ではなく軸分解能の2倍であるような異なる軸に対向する多次元因子化カーネルを利用する。
1.5^\circ$および0-7dayのリードタイムにおける提案モデルの決定論的予測精度は、純粋にデータ駆動型機械学習天気予報モデルと同等である。
また,提案モデルでは,トランスフォーマーモデルよりも計算コストの低い精度で精度を向上し,標準的な注意力を持つトランスフォーマーモデルよりも精度の高いパレートを推し進めることができることを示す。
関連論文リスト
- Prithvi WxC: Foundation Model for Weather and Climate [2.9230020115516253]
Prithvi WxCは、Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)から160変数を用いて開発された23億のパラメータ基盤モデルである。
このモデルは、異なる位相の気象現象を微細な解像度でモデル化するために、大きなトークン数に対応できるように設計されている。
本稿では, 自動回帰ロールアウト予測, ダウンスケーリング, 重力波フラックスパラメータ化, エクストリームイベント推定など, 課題のある下流タスクのセットでモデルを検証する。
論文 参考訳(メタデータ) (2024-09-20T15:53:17Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
実世界のプロセスの相関は時間的であり、それらによって生成されたデータは空間的および時間的進化の両方を示す。
時系列モデルが数値予測の代替となる。
本研究では,分解時間予測モデルにより計算コストを低減し,精度を向上することを示した。
論文 参考訳(メタデータ) (2022-09-29T13:47:02Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
我々は、高分解能でバイアス補正された予測のアンサンブルを生成するために、CorrectorGANという条件付きジェネレーティブ・アドバイサル・ネットワークを訓練する。
一度訓練されたCorrectorGANは、1台のマシンで数秒で予測を生成する。
その結果、地域モデルの必要性や、データ駆動型ダウンスケーリングと修正手法がデータ・プール領域に移行できるかどうかについて、エキサイティングな疑問が浮かび上がっている。
論文 参考訳(メタデータ) (2022-03-23T09:45:12Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
我々はNWPモデルと意思決定支援の「理想的な」予測とのギャップを埋める方法について述べる。
本研究では,各数値モデルの誤差プロファイルの学習にQuantile Regression Forestsを使用し,これを経験から得られた確率分布を予測に適用する。
第2に、これらの確率予測を量子平均化(quantile averaging)を用いて組み合わせ、第3に、集合量子化の間で補間して完全な予測分布を生成する。
論文 参考訳(メタデータ) (2020-05-06T16:46:02Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
深層畳み込みニューラルネットワーク(CNN)を用いたデータ駆動型世界天気予報フレームワークを提案する。
このフレームワークの新しい開発には、オフラインの体積保存的マッピングから立方体球格子へのマッピングが含まれる。
我々のモデルでは、入力された大気状態の少ない変数から複雑な表面温度パターンを予測することができる。
論文 参考訳(メタデータ) (2020-03-15T19:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。