論文の概要: Towards Subgraph Isomorphism Counting with Graph Kernels
- arxiv url: http://arxiv.org/abs/2405.07497v1
- Date: Mon, 13 May 2024 06:33:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 14:44:50.707583
- Title: Towards Subgraph Isomorphism Counting with Graph Kernels
- Title(参考訳): グラフカーネルを用いた部分グラフ同型計算に向けて
- Authors: Xin Liu, Weiqi Wang, Jiaxin Bai, Yangqiu Song,
- Abstract要約: 部分グラフ同型は#P完全 (#P-complete) と呼ばれ、正確な解を見つけるには指数時間を必要とする。
サブグラフ同型を数えることの可能性について先駆的に検討し、様々な変種を通してカーネル能力の増大を探求する。
本稿では,拡張グラフカーネルの有効性を実証する広範な実験結果について述べるとともに,今後の研究の方向性について述べる。
- 参考スコア(独自算出の注目度): 45.687427850611314
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Subgraph isomorphism counting is known as #P-complete and requires exponential time to find the accurate solution. Utilizing representation learning has been shown as a promising direction to represent substructures and approximate the solution. Graph kernels that implicitly capture the correlations among substructures in diverse graphs have exhibited great discriminative power in graph classification, so we pioneeringly investigate their potential in counting subgraph isomorphisms and further explore the augmentation of kernel capability through various variants, including polynomial and Gaussian kernels. Through comprehensive analysis, we enhance the graph kernels by incorporating neighborhood information. Finally, we present the results of extensive experiments to demonstrate the effectiveness of the enhanced graph kernels and discuss promising directions for future research.
- Abstract(参考訳): 部分グラフ同型カウントは #P-完全 (#P-complete) と呼ばれ、正確な解を見つけるのに指数時間を必要とする。
表現学習の利用は、サブストラクチャを表現し、解を近似するための有望な方向として示されてきた。
様々なグラフのサブ構造間の相関関係を暗黙的に捉えるグラフカーネルは、グラフ分類において大きな識別力を発揮しているため、サブグラフ同型を数えることにおけるそれらのポテンシャルを先駆的に研究し、多項式やガウスのカーネルを含む様々な変種によるカーネル能力の増大を探求する。
包括的解析により,周辺情報を組み込んでグラフカーネルを強化する。
最後に,拡張グラフカーネルの有効性を実証する広範な実験結果を示し,今後の研究の方向性について論じる。
関連論文リスト
- Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
グラフ拡散方程式は、様々なグラフトポロジーの存在下で、どのように外挿して一般化するかを示す。
本稿では,新たなグラフエンコーダのバックボーンであるAdvective Diffusion Transformer (ADiT)を提案する。
論文 参考訳(メタデータ) (2023-10-10T08:40:47Z) - Labeled Subgraph Entropy Kernel [11.812319306576816]
本稿では,構造的類似性評価に優れたラベル付きサブグラフエントロピーグラフカーネルを提案する。
動的プログラムサブグラフ列挙アルゴリズムを設計し,時間的複雑性を効果的に低減する。
提案手法をテストするために,複数の実世界のデータセットを適用し,異なるタスクの効果を評価する。
論文 参考訳(メタデータ) (2023-03-21T12:27:21Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - Transductive Kernels for Gaussian Processes on Graphs [7.542220697870243]
半教師付き学習のためのノード特徴データ付きグラフ用の新しいカーネルを提案する。
カーネルは、グラフと特徴データを2つの空間として扱うことにより、正規化フレームワークから派生する。
グラフ上のカーネルベースのモデルがどれだけの頻度で設計されているかを示す。
論文 参考訳(メタデータ) (2022-11-28T14:00:50Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
グラフ上での自己教師型学習をコントラッシブ手法を用いて研究する。
複数の部分空間におけるグラフの対比により、グラフエンコーダはより豊富な特徴を捉えることができる。
論文 参考訳(メタデータ) (2021-07-20T22:09:21Z) - Neighborhood Preserving Kernels for Attributed Graphs [0.9176056742068812]
本稿では,属性グラフに適した再生カーネルの設計について述べる。
2つのグラフ間の類似性は、グラフノードの近傍情報に基づいて定義される。
提案したカーネルをサポートベクトルマシンに組み込むことで,実世界のデータセットを分析した。
論文 参考訳(メタデータ) (2020-10-13T09:58:50Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Gaussian Processes on Graphs via Spectral Kernel Learning [9.260186030255081]
グラフのノード上で定義された信号の予測のためのグラフスペクトルに基づくガウス過程を提案する。
合成実験におけるモデルの解釈可能性を示し、様々な基底真理スペクトルフィルタを精度良く回収できることを示す。
論文 参考訳(メタデータ) (2020-06-12T17:51:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。