RESTAD: REconstruction and Similarity based Transformer for time series Anomaly Detection
- URL: http://arxiv.org/abs/2405.07509v1
- Date: Mon, 13 May 2024 07:10:35 GMT
- Title: RESTAD: REconstruction and Similarity based Transformer for time series Anomaly Detection
- Authors: Ramin Ghorbani, Marcel J. T. Reinders, David M. J. Tax,
- Abstract summary: Anomaly detection in time series data is crucial across various domains.
We introduce RESTAD, an adaptation of the Transformer model by incorporating a layer of Radial Basis Function (RBF) neurons within its architecture.
- Score: 3.0377067713090633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in time series data is crucial across various domains. The scarcity of labeled data for such tasks has increased the attention towards unsupervised learning methods. These approaches, often relying solely on reconstruction error, typically fail to detect subtle anomalies in complex datasets. To address this, we introduce RESTAD, an adaptation of the Transformer model by incorporating a layer of Radial Basis Function (RBF) neurons within its architecture. This layer fits a non-parametric density in the latent representation, such that a high RBF output indicates similarity with predominantly normal training data. RESTAD integrates the RBF similarity scores with the reconstruction errors to increase sensitivity to anomalies. Our empirical evaluations demonstrate that RESTAD outperforms various established baselines across multiple benchmark datasets.
Related papers
- ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - DACR: Distribution-Augmented Contrastive Reconstruction for Time-Series
Anomaly Detection [12.3866167448478]
Anomaly detection in time-series data is crucial for identifying faults, failures, threats, and outliers across a range of applications.
Recently, deep learning techniques have been applied to this topic, but they often struggle in real-world scenarios.
We propose Distribution-Augmented Contrastive Reconstruction (DACR) to tackle these challenges.
arXiv Detail & Related papers (2024-01-20T16:56:52Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
This study presents an adversarial method for anomaly detection in real-world applications, leveraging the power of generative adversarial neural networks (GANs)
Previous methods suffer from the high variance between class-wise accuracy which leads to not being applicable for all types of anomalies.
The proposed method named RCALAD tries to solve this problem by introducing a novel discriminator to the structure, which results in a more efficient training process.
arXiv Detail & Related papers (2023-04-16T13:05:39Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - Exploring Invariant Representation for Visible-Infrared Person
Re-Identification [77.06940947765406]
Cross-spectral person re-identification, which aims to associate identities to pedestrians across different spectra, faces a main challenge of the modality discrepancy.
In this paper, we address the problem from both image-level and feature-level in an end-to-end hybrid learning framework named robust feature mining network (RFM)
Experiment results on two standard cross-spectral person re-identification datasets, RegDB and SYSU-MM01, have demonstrated state-of-the-art performance.
arXiv Detail & Related papers (2023-02-02T05:24:50Z) - ARES: Locally Adaptive Reconstruction-based Anomaly Scoring [25.707159917988733]
We show that anomaly scoring function is not adaptive to the natural variation in reconstruction error across the range of normal samples.
We propose a novel Adaptive Reconstruction Error-based Scoring approach, which adapts its scoring based on the local behaviour of reconstruction error over the latent space.
arXiv Detail & Related papers (2022-06-15T15:35:12Z) - Regularization-Agnostic Compressed Sensing MRI Reconstruction with
Hypernetworks [21.349071909858218]
We present a novel strategy of using a hypernetwork to generate the parameters of a separate reconstruction network as a function of the regularization weight(s)
At test time, for a given under-sampled image, our model can rapidly compute reconstructions with different amounts of regularization.
We analyze the variability of these reconstructions, especially in situations when the overall quality is similar.
arXiv Detail & Related papers (2021-01-06T18:55:37Z) - Reconstruct Anomaly to Normal: Adversarial Learned and Latent
Vector-constrained Autoencoder for Time-series Anomaly Detection [3.727524403726822]
Anomaly detection in time series has been widely researched and has important practical applications.
In recent years, anomaly detection algorithms are mostly based on deep-learning generative models and use the reconstruction error to detect anomalies.
We propose RAN based on the idea of Reconstruct Anomalies to Normal and apply it for unsupervised time series anomaly detection.
arXiv Detail & Related papers (2020-10-14T07:10:55Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.