Polyp-SES: Automatic Polyp Segmentation with Self-Enriched Semantic Model
- URL: http://arxiv.org/abs/2410.01210v1
- Date: Wed, 2 Oct 2024 03:34:23 GMT
- Title: Polyp-SES: Automatic Polyp Segmentation with Self-Enriched Semantic Model
- Authors: Quang Vinh Nguyen, Thanh Hoang Son Vo, Sae-Ryung Kang, Soo-Hyung Kim,
- Abstract summary: We propose an innovative method named Automatic Polyp with Self-Enriched Semantic Model'' to address limitations in existing approaches.
First, we extract a sequence of features from an input image and decode high-level features to generate an initial segmentation mask.
Using the proposed self-enriched semantic module, we query potential semantics and augment deep features with additional semantics, thereby aiding the model in understanding context more effectively.
- Score: 7.424888086388194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic polyp segmentation is crucial for effective diagnosis and treatment in colonoscopy images. Traditional methods encounter significant challenges in accurately delineating polyps due to limitations in feature representation and the handling of variability in polyp appearance. Deep learning techniques, including CNN and Transformer-based methods, have been explored to improve polyp segmentation accuracy. However, existing approaches often neglect additional semantics, restricting their ability to acquire adequate contexts of polyps in colonoscopy images. In this paper, we propose an innovative method named ``Automatic Polyp Segmentation with Self-Enriched Semantic Model'' to address these limitations. First, we extract a sequence of features from an input image and decode high-level features to generate an initial segmentation mask. Using the proposed self-enriched semantic module, we query potential semantics and augment deep features with additional semantics, thereby aiding the model in understanding context more effectively. Extensive experiments show superior segmentation performance of the proposed method against state-of-the-art polyp segmentation baselines across five polyp benchmarks in both superior learning and generalization capabilities.
Related papers
- Polyp-E: Benchmarking the Robustness of Deep Segmentation Models via Polyp Editing [32.30835026874521]
In daily clinical practice, clinicians exhibit robustness in identifying polyps with both location and size variations.
It is uncertain if deep segmentation models can achieve comparable robustness in automated colonoscopic analysis.
We focus on evaluating the robustness of segmentation models on the polyps with various attributes and healthy samples.
arXiv Detail & Related papers (2024-10-22T06:30:37Z) - EPPS: Advanced Polyp Segmentation via Edge Information Injection and Selective Feature Decoupling [5.453850739960517]
We propose a novel model named Edge-Prioritized Polyp (EPPS)
Specifically, we incorporate an Edge Mapping Engine (EME) aimed at accurately extracting the edges of polyps.
We also introduce a component called Selective Feature Decoupler (SFD) to suppress the influence of noise and extraneous features on the model.
arXiv Detail & Related papers (2024-05-20T07:41:04Z) - Multi-scale Information Sharing and Selection Network with Boundary Attention for Polyp Segmentation [10.152504573356413]
We propose a Multi-scale information sharing and selection network (MISNet) for polyp segmentation task.
Experiments on five polyp segmentation datasets demonstrate that MISNet successfully improved the accuracy and clarity of segmentation result.
arXiv Detail & Related papers (2024-05-18T02:48:39Z) - Adaptation of Distinct Semantics for Uncertain Areas in Polyp Segmentation [11.646574658785362]
This work presents a new novel architecture namely Adaptation of Distinct Semantics for Uncertain Areas in Polyp (ADSNet)
ADSNet modifies misclassified details and recovers weak features having the ability to vanish and not be detected at the final stage.
experimental results demonstrate the great correction and recovery ability leading to better segmentation performance compared to the other state of the art in the polyp image segmentation task.
arXiv Detail & Related papers (2024-05-13T07:41:28Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - BoxPolyp:Boost Generalized Polyp Segmentation Using Extra Coarse
Bounding Box Annotations [79.17754846553866]
We propose a boosted BoxPolyp model to make full use of both accurate mask and extra coarse box annotations.
In practice, box annotations are applied to alleviate the over-fitting issue of previous polyp segmentation models.
Our proposed model outperforms previous state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-12-07T07:45:50Z) - Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers [124.01928050651466]
We propose a new type of polyp segmentation method, named Polyp-PVT.
The proposed model, named Polyp-PVT, effectively suppresses noises in the features and significantly improves their expressive capabilities.
arXiv Detail & Related papers (2021-08-16T07:09:06Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.