Requirements Engineering for Research Software: A Vision
- URL: http://arxiv.org/abs/2405.07781v1
- Date: Mon, 13 May 2024 14:25:01 GMT
- Title: Requirements Engineering for Research Software: A Vision
- Authors: Adrian Bajraktari, Michelle Binder, Andreas Vogelsang,
- Abstract summary: Most researchers creating software for scientific purposes are not trained in Software Engineering.
Research software is often developed ad hoc without following stringent processes.
We describe how researchers elicit, document, and analyze requirements for research software.
- Score: 2.2217676348694213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern science is relying on software more than ever. The behavior and outcomes of this software shape the scientific and public discourse on important topics like climate change, economic growth, or the spread of infections. Most researchers creating software for scientific purposes are not trained in Software Engineering. As a consequence, research software is often developed ad hoc without following stringent processes. With this paper, we want to characterize research software as a new application domain that needs attention from the Requirements Engineering community. We conducted an exploratory study based on 8 interviews with 12 researchers who develop software. We describe how researchers elicit, document, and analyze requirements for research software and what processes they follow. From this, we derive specific challenges and describe a vision of Requirements Engineering for research software.
Related papers
- Teaching Research Design in Software Engineering [1.9659095632676098]
Empirical Software Engineering (ESE) has emerged as a contending force aiming to critically evaluate and provide knowledge that informs practice in adopting new technologies.
This chapter teaches foundational skills in research design, essential for educating software engineers and researchers in ESE.
arXiv Detail & Related papers (2024-07-06T21:06:13Z) - MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows [58.56005277371235]
We introduce MASSW, a comprehensive text dataset on Multi-Aspect Summarization of ScientificAspects.
MASSW includes more than 152,000 peer-reviewed publications from 17 leading computer science conferences spanning the past 50 years.
We demonstrate the utility of MASSW through multiple novel machine-learning tasks that can be benchmarked using this new dataset.
arXiv Detail & Related papers (2024-06-10T15:19:09Z) - No Free Lunch: Research Software Testing in Teaching [1.4396109429521227]
This research explores the effects of research software testing integrated into teaching on research software.
In an in-vivo experiment, we integrated the engineering of a test suite for a large-scale network simulation as group projects into a course on software testing at the Blekinge Institute of Technology, Sweden.
We found that the research software benefited from the integration through substantially improved documentation and fewer hardware and software dependencies.
arXiv Detail & Related papers (2024-05-20T11:40:01Z) - Cycling on the Freeway: The Perilous State of Open Source Neuroscience Software [46.83624918571962]
We will argue that the existing ecosystem of neuroscientific open source software is brittle.
In recent years there has been a shift toward relying on free, open-source scientific software (FOSSS) for neuroscience data analysis.
arXiv Detail & Related papers (2024-03-28T13:11:09Z) - Ten simple rules for teaching sustainable software engineering [0.0]
Developing high-quality research software requires scientists to develop a host of software development skills.
There has been a growing importance placed on ensuring foundational and good development practices in computational research.
Recent articles in the Ten Simple Rules collection have discussed the teaching of computer science and coding techniques to biology students.
We advance this discussion by describing the specific steps for effectively teaching the necessary skills scientists need to develop sustainable software packages.
arXiv Detail & Related papers (2024-02-07T10:16:20Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Can GPT-4 Replicate Empirical Software Engineering Research? [20.89031544114989]
We study GPT-4's abilities to perform replications of empirical software engineering research on new data.
We find GPT-4 is able to surface correct assumptions, but struggles to generate ones that apply common knowledge about software engineering data.
arXiv Detail & Related papers (2023-10-03T01:27:23Z) - Literature Review: Computer Vision Applications in Transportation
Logistics and Warehousing [58.720142291102135]
Computer vision applications in transportation logistics and warehousing have a huge potential for process automation.
We present a structured literature review on research in the field to help leverage this potential.
arXiv Detail & Related papers (2023-04-12T17:33:41Z) - Towards Automated Process Planning and Mining [77.34726150561087]
We present a research project in which researchers from the AI and BPM field work jointly together.
We discuss the overall research problem, the relevant fields of research and our overall research framework to automatically derive process models.
arXiv Detail & Related papers (2022-08-18T16:41:22Z) - Software must be recognised as an important output of scholarly research [7.776162183510522]
We argue that as well as being important from a methodological perspective, software should be recognised as an output of research.
The article discusses the different roles that software may play in research and highlights the relationship between software and research sustainability.
arXiv Detail & Related papers (2020-11-15T16:34:31Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.