論文の概要: Hamiltonian-based Quantum Reinforcement Learning for Neural Combinatorial Optimization
- arxiv url: http://arxiv.org/abs/2405.07790v1
- Date: Mon, 13 May 2024 14:36:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 13:25:43.145871
- Title: Hamiltonian-based Quantum Reinforcement Learning for Neural Combinatorial Optimization
- Title(参考訳): ニューラルコンビネーション最適化のためのハミルトン型量子強化学習
- Authors: Georg Kruse, Rodrigo Coehlo, Andreas Rosskopf, Robert Wille, Jeanette Miriam Lorenz,
- Abstract要約: 量子コンピューティング(QC)とニューラル最適化(NCO)の交差点におけるアプローチとして,ハミルトニアンの量子強化学習(QRL)を導入する。
我々のアンサーゼは、ハードウェア効率のよいアンサーゼと比較して、良好なトレーサビリティ特性を示す一方で、以前の研究とは異なり、グラフベースの問題に制限されない。
本研究では,ハミルトニアンのQRLの性能を多種多様な最適化問題で評価し,本手法の適用可能性を実証し,QAOAと比較する。
- 参考スコア(独自算出の注目度): 2.536162003546062
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Advancements in Quantum Computing (QC) and Neural Combinatorial Optimization (NCO) represent promising steps in tackling complex computational challenges. On the one hand, Variational Quantum Algorithms such as QAOA can be used to solve a wide range of combinatorial optimization problems. On the other hand, the same class of problems can be solved by NCO, a method that has shown promising results, particularly since the introduction of Graph Neural Networks. Given recent advances in both research areas, we introduce Hamiltonian-based Quantum Reinforcement Learning (QRL), an approach at the intersection of QC and NCO. We model our ansatzes directly on the combinatorial optimization problem's Hamiltonian formulation, which allows us to apply our approach to a broad class of problems. Our ansatzes show favourable trainability properties when compared to the hardware efficient ansatzes, while also not being limited to graph-based problems, unlike previous works. In this work, we evaluate the performance of Hamiltonian-based QRL on a diverse set of combinatorial optimization problems to demonstrate the broad applicability of our approach and compare it to QAOA.
- Abstract(参考訳): 量子コンピューティング(QC)とニューラルコンビネーション最適化(NCO)の進歩は、複雑な計算課題に取り組む上で有望なステップである。
一方、QAOAのような変分量子アルゴリズムは、幅広い組合せ最適化問題を解くのに利用できる。
一方, グラフニューラルネットワークの導入以降, 有望な結果を示す手法である NCO では, 同様の問題を解くことができる。
両研究分野の最近の進歩を踏まえ、QCとNCOの交差点におけるアプローチであるハミルトンに基づく量子強化学習(QRL)を紹介する。
我々は、組合せ最適化問題のハミルトンの定式化を直接モデルとし、より広範な問題にアプローチを適用することができる。
我々のアンサーゼは、ハードウェア効率のよいアンサーゼと比較して、良好なトレーサビリティ特性を示す一方で、以前の研究とは異なり、グラフベースの問題に制限されない。
本研究では,ハミルトン型QRLの多種多様な組合せ最適化問題に対する性能評価を行い,本手法の適用性を実証し,QAOAと比較する。
関連論文リスト
- Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm [14.554010382366302]
量子近似最適化(Quantum Approximate Optimization, QAOA)は、Max-Cutの問題を効率的に解く可能性において際立っている。
我々は,GNNをウォームスタート手法として,グラフニューラルネットワーク(GNN)を用いてQAOAを最適化する。
以上の結果から,量子コンピューティングにおけるGNNのQAOA性能向上の可能性が示唆され,量子古典的ハイブリッドコンピューティングへの新たな道が開かれた。
論文 参考訳(メタデータ) (2024-03-05T20:23:25Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
我々は、モデルフリーQ値ポリシー近似をPointer Networks(Ptr-Nets)と統合したハイブリッドニューラルネットワークであるPointer Q-Network(PQN)を紹介する。
実験により,本手法の有効性を実証し,不安定な環境でモデルをテストする。
論文 参考訳(メタデータ) (2023-11-05T12:03:58Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
最適化問題に対する量子インフォームド再帰最適化(QIRO)アルゴリズムのファミリを提案し,実装する。
提案手法は、量子資源を利用して、問題固有の古典的還元ステップで使用される情報を得る。
バックトラック技術を用いて、量子ハードウェアの要求を増大させることなく、アルゴリズムの性能をさらに向上させる。
論文 参考訳(メタデータ) (2023-08-25T18:02:06Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
本稿では,一般に局所的に制約された最適化問題に対する量子インスパイアされたテンソルネットワークに基づくアルゴリズムを提案する。
我々のアルゴリズムは、興味のある問題に対してハミルトニアンを構築し、量子問題に効果的にマッピングする。
本研究は,本手法の有効性と応用の可能性を示すものである。
論文 参考訳(メタデータ) (2022-03-29T05:44:07Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
浅いQAOA回路の量子ビット数と線形にスケールするグラフ分解に基づく古典的アルゴリズムを提案する。
我々の結果は、QAOAによる量子アドバンテージの探索だけでなく、NISQプロセッサのベンチマークにも有用である。
論文 参考訳(メタデータ) (2021-12-21T12:41:31Z) - Quantum Approximate Optimization Algorithm applied to the binary
perceptron [0.46664938579243564]
本稿では,量子アニーリング(QA)と量子近似最適化アルゴリズム(QAOA)を,ニューラルネットワークにおける教師あり学習のパラダイムタスクに適用する。
我々はQAOAパラメータに対する最適滑らかな解の存在を証明し、同じ問題の典型例間で伝達可能であることを示す。
従来のQAよりもQAOAの性能が向上したことを示す。
論文 参考訳(メタデータ) (2021-12-19T18:33:22Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。