Decoding Geometric Properties in Non-Random Data from First Information-Theoretic Principles
- URL: http://arxiv.org/abs/2405.07803v2
- Date: Sat, 18 May 2024 01:24:24 GMT
- Title: Decoding Geometric Properties in Non-Random Data from First Information-Theoretic Principles
- Authors: Hector Zenil, Felipe S. Abrahão,
- Abstract summary: We introduce a univariate signal deconvolution method with a wide range of applications to coding theory.
Our multidimensional space reconstruction method from an arbitrary received signal is proven to be vis-a-vis the encoding-decoding scheme.
We argue that this optimal and universal method of decoding non-random data has applications to signal processing, causal deconvolution, topological and geometric properties encoding, cryptography, and bio-signature and techno signature detection.
- Score: 0.17265013728931003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on the principles of information theory, measure theory, and theoretical computer science, we introduce a univariate signal deconvolution method with a wide range of applications to coding theory, particularly in zero-knowledge one-way communication channels, such as in deciphering messages from unknown generating sources about which no prior knowledge is available and to which no return message can be sent. Our multidimensional space reconstruction method from an arbitrary received signal is proven to be agnostic vis-a-vis the encoding-decoding scheme, computation model, programming language, formal theory, the computable (or semi-computable) method of approximation to algorithmic complexity, and any arbitrarily chosen (computable) probability measure of the events. The method derives from the principles of an approach to Artificial General Intelligence capable of building a general-purpose model of models independent of any arbitrarily assumed prior probability distribution. We argue that this optimal and universal method of decoding non-random data has applications to signal processing, causal deconvolution, topological and geometric properties encoding, cryptography, and bio- and technosignature detection.
Related papers
- Flow-based generative models as iterative algorithms in probability space [18.701755188870823]
Flow-based generative models offer exact likelihood estimation, efficient sampling, and deterministic transformations.
This tutorial presents an intuitive mathematical framework for flow-based generative models.
We aim to equip researchers and practitioners with the necessary tools to effectively apply flow-based generative models in signal processing and machine learning.
arXiv Detail & Related papers (2025-02-19T03:09:18Z) - Bridging Geometric States via Geometric Diffusion Bridge [79.60212414973002]
We introduce the Geometric Diffusion Bridge (GDB), a novel generative modeling framework that accurately bridges initial and target geometric states.
GDB employs an equivariant diffusion bridge derived by a modified version of Doob's $h$-transform for connecting geometric states.
We show that GDB surpasses existing state-of-the-art approaches, opening up a new pathway for accurately bridging geometric states.
arXiv Detail & Related papers (2024-10-31T17:59:53Z) - Shape-informed surrogate models based on signed distance function domain encoding [8.052704959617207]
We propose a non-intrusive method to build surrogate models that approximate the solution of parameterized partial differential equations (PDEs)
Our approach is based on the combination of two neural networks (NNs)
arXiv Detail & Related papers (2024-09-19T01:47:04Z) - Fuse, Reason and Verify: Geometry Problem Solving with Parsed Clauses from Diagram [78.79651421493058]
We propose a neural-symbolic model for plane geometry problem solving (PGPS) with three key steps: modal fusion, reasoning process and knowledge verification.
For reasoning, we design an explicable solution program to describe the geometric reasoning process, and employ a self-limited decoder to generate solution program autoregressively.
We also construct a large-scale geometry problem dataset called PGPS9K, containing fine-grained annotations of textual clauses, solution program and involved knowledge solvers.
arXiv Detail & Related papers (2024-07-10T02:45:22Z) - Physics and geometry informed neural operator network with application to acoustic scattering [0.0]
We propose a physics-informed deep operator network (DeepONet) capable of predicting the scattered pressure field for arbitrarily shaped scatterers.
Our trained model is capable of learning solution operator that can approximate physically-consistent scattered pressure field in just a few seconds.
arXiv Detail & Related papers (2024-06-02T03:41:52Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - An Optimal, Universal and Agnostic Decoding Method for Message Reconstruction, Bio and Technosignature Detection [0.15361702135159847]
We present a signal reconstruction method for zero-knowledge one-way communication channels.
We investigate how non-random messages may encode information about the physical properties.
arXiv Detail & Related papers (2023-03-28T15:20:25Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Understanding the Mapping of Encode Data Through An Implementation of
Quantum Topological Analysis [0.7106986689736827]
We show the difference in encoding techniques can be visualized by investigating the topology of the data embedded in complex Hilbert space.
Our results suggest the encoding method needs to be considered carefully within different quantum machine learning models.
arXiv Detail & Related papers (2022-09-21T18:46:08Z) - A Quantum Algorithm for Computing All Diagnoses of a Switching Circuit [73.70667578066775]
Faults are by nature while most man-made systems, and especially computers, work deterministically.
This paper provides such a connecting via quantum information theory which is an intuitive approach as quantum physics obeys probability laws.
arXiv Detail & Related papers (2022-09-08T17:55:30Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
We study counterfactual synthesis from a new perspective of knowledge extrapolation.
We show that an adversarial game with a closed-form discriminator can be used to address the knowledge extrapolation problem.
Our method enjoys both elegant theoretical guarantees and superior performance in many scenarios.
arXiv Detail & Related papers (2022-05-21T08:39:42Z) - Geometric Methods for Sampling, Optimisation, Inference and Adaptive
Agents [102.42623636238399]
We identify fundamental geometric structures that underlie the problems of sampling, optimisation, inference and adaptive decision-making.
We derive algorithms that exploit these geometric structures to solve these problems efficiently.
arXiv Detail & Related papers (2022-03-20T16:23:17Z) - Nonlinear Discrete Optimisation of Reversible Steganographic Coding [0.7614628596146599]
Steganographic distortion might be inadmissible in fidelity-sensitive situations.
In this study, we formulate reversible steganographic coding as a nonlinear discrete optimisation problem.
Linearisation techniques are developed to enable mixed-integer linear programming.
arXiv Detail & Related papers (2022-02-26T13:02:32Z) - Information Field Theory as Artificial Intelligence [0.0]
Information field theory (IFT) is a mathematical framework for signal reconstruction and non-parametric inverse problems.
In this paper, the inference in IFT is reformulated in terms of GNN training and the cross-fertilization of numerical variational inference methods used in IFT and machine learning are discussed.
arXiv Detail & Related papers (2021-12-19T12:29:01Z) - Logical Credal Networks [87.25387518070411]
This paper introduces Logical Credal Networks, an expressive probabilistic logic that generalizes many prior models that combine logic and probability.
We investigate its performance on maximum a posteriori inference tasks, including solving Mastermind games with uncertainty and detecting credit card fraud.
arXiv Detail & Related papers (2021-09-25T00:00:47Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Parsimonious Inference [0.0]
Parsimonious inference is an information-theoretic formulation of inference over arbitrary architectures.
Our approaches combine efficient encodings with prudent sampling strategies to construct predictive ensembles without cross-validation.
arXiv Detail & Related papers (2021-03-03T04:13:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.