Physics and geometry informed neural operator network with application to acoustic scattering
- URL: http://arxiv.org/abs/2406.03407v1
- Date: Sun, 2 Jun 2024 03:41:52 GMT
- Title: Physics and geometry informed neural operator network with application to acoustic scattering
- Authors: Siddharth Nair, Timothy F. Walsh, Greg Pickrell, Fabio Semperlotti,
- Abstract summary: We propose a physics-informed deep operator network (DeepONet) capable of predicting the scattered pressure field for arbitrarily shaped scatterers.
Our trained model is capable of learning solution operator that can approximate physically-consistent scattered pressure field in just a few seconds.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we introduce a physics and geometry informed neural operator network with application to the forward simulation of acoustic scattering. The development of geometry informed deep learning models capable of learning a solution operator for different computational domains is a problem of general importance for a variety of engineering applications. To this end, we propose a physics-informed deep operator network (DeepONet) capable of predicting the scattered pressure field for arbitrarily shaped scatterers using a geometric parameterization approach based on non-uniform rational B-splines (NURBS). This approach also results in parsimonious representations of non-trivial scatterer geometries. In contrast to existing physics-based approaches that require model re-evaluation when changing the computational domains, our trained model is capable of learning solution operator that can approximate physically-consistent scattered pressure field in just a few seconds for arbitrary rigid scatterer shapes; it follows that the computational time for forward simulations can improve (i.e. be reduced) by orders of magnitude in comparison to the traditional forward solvers. In addition, this approach can evaluate the scattered pressure field without the need for labeled training data. After presenting the theoretical approach, a comprehensive numerical study is also provided to illustrate the remarkable ability of this approach to simulate the acoustic pressure fields resulting from arbitrary combinations of arbitrary scatterer geometries. These results highlight the unique generalization capability of the proposed operator learning approach.
Related papers
- Physics-informed neural networks for transformed geometries and
manifolds [0.0]
We propose a novel method for integrating geometric transformations within PINNs to robustly accommodate geometric variations.
We demonstrate the enhanced flexibility over traditional PINNs, especially under geometric variations.
The proposed framework presents an outlook for training deep neural operators over parametrized geometries.
arXiv Detail & Related papers (2023-11-27T15:47:33Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
We introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization.
The results of our physics-aware CNN are compared to a state-of-the-art data-based approach.
arXiv Detail & Related papers (2023-08-04T05:09:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Random Grid Neural Processes for Parametric Partial Differential
Equations [5.244037702157957]
We introduce a new class of spatially probabilistic physics and data informed deep latent models for PDEs.
We solve forward and inverse problems for parametric PDEs in a way that leads to the construction of Gaussian process models of solution fields.
We show how to incorporate noisy data in a principled manner into our physics informed model to improve predictions for problems where data may be available.
arXiv Detail & Related papers (2023-01-26T11:30:56Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - Arbitrary Marginal Neural Ratio Estimation for Simulation-based
Inference [7.888755225607877]
We present a novel method that enables amortized inference over arbitrary subsets of the parameters, without resorting to numerical integration.
We demonstrate the applicability of the method on parameter inference of binary black hole systems from gravitational waves observations.
arXiv Detail & Related papers (2021-10-01T14:35:46Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNs approach allows training neural networks while respecting the PDEs as a strong constraint in the optimization.
In standard small-scale circulation simulations, it is shown that the conventional approach incorporates a pseudo diffusive effect that is almost as large as the effect of the turbulent diffusion model.
Of all the schemes tested, only the PINNs approximation accurately predicted the outcome.
arXiv Detail & Related papers (2021-03-15T05:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.