論文の概要: Investigating the Semantic Robustness of CLIP-based Zero-Shot Anomaly Segmentation
- arxiv url: http://arxiv.org/abs/2405.07969v1
- Date: Mon, 13 May 2024 17:47:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 12:36:51.918034
- Title: Investigating the Semantic Robustness of CLIP-based Zero-Shot Anomaly Segmentation
- Title(参考訳): CLIPをベースとしたゼロショット異常セグメンテーションにおける意味的ロバスト性の検討
- Authors: Kevin Stangl, Marius Arvinte, Weilin Xu, Cory Cornelius,
- Abstract要約: 3つの意味変換を用いて実験データを摂動することで,ゼロショット異常セグメンテーションアルゴリズムの性能について検討する。
モデルアーキテクチャや学習目標に関係なく、3つのCLIPバックボーンでパフォーマンスが一貫して低下していることが分かりました。
- 参考スコア(独自算出の注目度): 2.722220619798093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-shot anomaly segmentation using pre-trained foundation models is a promising approach that enables effective algorithms without expensive, domain-specific training or fine-tuning. Ensuring that these methods work across various environmental conditions and are robust to distribution shifts is an open problem. We investigate the performance of WinCLIP [14] zero-shot anomaly segmentation algorithm by perturbing test data using three semantic transformations: bounded angular rotations, bounded saturation shifts, and hue shifts. We empirically measure a lower performance bound by aggregating across per-sample worst-case perturbations and find that average performance drops by up to 20% in area under the ROC curve and 40% in area under the per-region overlap curve. We find that performance is consistently lowered on three CLIP backbones, regardless of model architecture or learning objective, demonstrating a need for careful performance evaluation.
- Abstract(参考訳): 事前訓練された基礎モデルを用いたゼロショット異常セグメンテーションは、高価なドメイン固有のトレーニングや微調整なしで効果的なアルゴリズムを可能にする有望なアプローチである。
これらの手法が様々な環境条件にまたがって機能し、分散シフトに対して堅牢であることを保証することは、オープンな問題である。
我々は,WinCLIP[14]ゼロショット異常セグメンテーションアルゴリズムの性能を,有界角回転,有界飽和シフト,色相シフトという3つの意味変換を用いて解析した。
実験により, サンプルごとの最悪ケースの摂動にまたがって, 平均性能がROC曲線の領域で最大20%低下し, オーバーラップ曲線の領域で40%低下することが確認された。
モデルアーキテクチャや学習目標に関係なく、3つのCLIPバックボーン上でパフォーマンスが一貫して低下し、注意深いパフォーマンス評価の必要性が示されています。
関連論文リスト
- C3: Cross-instance guided Contrastive Clustering [8.953252452851862]
クラスタリングは、事前に定義されたラベルを使わずに、類似したデータサンプルをクラスタに収集するタスクである。
我々は,新しいコントラストクラスタリング手法であるクロスインスタンスガイドコントラストクラスタリング(C3)を提案する。
提案手法は、ベンチマークコンピュータビジョンデータセット上で最先端のアルゴリズムより優れている。
論文 参考訳(メタデータ) (2022-11-14T06:28:07Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Interpolation-based Contrastive Learning for Few-Label Semi-Supervised
Learning [43.51182049644767]
半教師付き学習(SSL)は,ラベルが限定された強力なモデルを構築する上で,有効な手法であることが長年証明されてきた。
摂動サンプルを元のものと類似した予測を強制する正規化に基づく手法が注目されている。
本稿では,学習ネットワークの埋め込みを誘導し,サンプル間の線形変化を誘導する新たな対照的な損失を提案する。
論文 参考訳(メタデータ) (2022-02-24T06:00:05Z) - Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting [11.64827192421785]
教師なし表現学習は、人間の介入なしに機能を自動抽出するための有望な方向である。
本稿では、ポイントワイドおよびグローバルな特徴の学習を行うために、textbfConClu という、一般的な教師なしアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-05T12:54:17Z) - Test-time Batch Statistics Calibration for Covariate Shift [66.7044675981449]
我々は,推論中に深層モデルを新しい環境に適応させることを提案する。
バッチ統計の校正に$alpha$-BNの一般的な定式化を提案する。
また、統合テスト時間適応フレームワークCoreを形成するための新しい損失関数も提示する。
論文 参考訳(メタデータ) (2021-10-06T08:45:03Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
逆変換ネットワークを用いたセマンティックセグメンテーションのための新しい境界認識損失項を提案する。
このプラグイン損失項は境界変換の捕捉におけるクロスエントロピー損失を補完する。
室内および屋外のセグメンテーションベンチマークにおける損失関数の定量的および定性的効果を解析した。
論文 参考訳(メタデータ) (2021-04-06T18:52:45Z) - CLAWS: Clustering Assisted Weakly Supervised Learning with Normalcy
Suppression for Anomalous Event Detection [20.368114998124295]
本稿では,多様体の寄与を考慮した弱教師付き異常検出手法を提案する。
提案手法は, UCF Crime と ShanghaiTech のデータセットでそれぞれ 83.03% と 89.67% のフレームレベルの AUC 性能を得る。
論文 参考訳(メタデータ) (2020-11-24T13:27:40Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
本稿では,差分プライバシー制約下での校正問題の性質を抽象化する枠組みを提案する。
また、新しいリカレーションアルゴリズム、精度温度スケーリングを設計し、プライベートデータセットの事前処理より優れています。
論文 参考訳(メタデータ) (2020-08-21T18:43:37Z) - Generalized Zero-Shot Learning Via Over-Complete Distribution [79.5140590952889]
そこで本稿では,CVAE (Conditional Variational Autoencoder) を用いたOCD(Over-Complete Distribution) の生成を提案する。
フレームワークの有効性は,Zero-Shot LearningプロトコルとGeneralized Zero-Shot Learningプロトコルの両方を用いて評価する。
論文 参考訳(メタデータ) (2020-04-01T19:05:28Z) - Iterative Averaging in the Quest for Best Test Error [22.987387623516614]
本稿では,ガウス過程摂動モデルを用いて,反復平均化の一般化性能の増大を解析・説明する。
我々は理論結果から最新の3つの現象を導出する。
CIFAR-10/100, ImageNet, Penn Treebank のデータセットにアプローチの有効性を示す。
論文 参考訳(メタデータ) (2020-03-02T23:27:29Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。