論文の概要: Automating Data Annotation under Strategic Human Agents: Risks and Potential Solutions
- arxiv url: http://arxiv.org/abs/2405.08027v4
- Date: Fri, 11 Oct 2024 00:37:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-14 13:29:39.745971
- Title: Automating Data Annotation under Strategic Human Agents: Risks and Potential Solutions
- Title(参考訳): 戦略的エージェントによるデータアノテーションの自動化:リスクと可能性
- Authors: Tian Xie, Xueru Zhang,
- Abstract要約: 本稿では,機械学習モデルがモデル注釈付きサンプルで再訓練される場合の長期的影響について検討する。
モデルが再訓練されるにつれて、エージェントが肯定的な判断を受けやすいことが分かっています。
そこで本研究では,力学を安定化させる改良されたリトレーニングプロセスを提案する。
- 参考スコア(独自算出の注目度): 10.448052192725168
- License:
- Abstract: As machine learning (ML) models are increasingly used in social domains to make consequential decisions about humans, they often have the power to reshape data distributions. Humans, as strategic agents, continuously adapt their behaviors in response to the learning system. As populations change dynamically, ML systems may need frequent updates to ensure high performance. However, acquiring high-quality human-annotated samples can be highly challenging and even infeasible in social domains. A common practice to address this issue is using the model itself to annotate unlabeled data samples. This paper investigates the long-term impacts when ML models are retrained with model-annotated samples when they incorporate human strategic responses. We first formalize the interactions between strategic agents and the model and then analyze how they evolve under such dynamic interactions. We find that agents are increasingly likely to receive positive decisions as the model gets retrained, whereas the proportion of agents with positive labels may decrease over time. We thus propose a refined retraining process to stabilize the dynamics. Last, we examine how algorithmic fairness can be affected by these retraining processes and find that enforcing common fairness constraints at every round may not benefit the disadvantaged group in the long run. Experiments on (semi-)synthetic and real data validate the theoretical findings.
- Abstract(参考訳): 機械学習(ML)モデルは、人間に関する連続的な決定を行うために、社会的ドメインでますます使われているため、データ分散を再形成する能力を持つことが多い。
人間は、戦略的エージェントとして、学習システムに反応して継続的に行動に適応する。
人口が動的に変化するにつれて、MLシステムは高いパフォーマンスを保証するために頻繁な更新を必要とする可能性がある。
しかし、高品質な人名サンプルの取得は、社会的領域において非常に困難であり、不可能である。
この問題に対処する一般的なプラクティスは、モデル自体を使用してラベルのないデータサンプルを注釈付けすることです。
本稿では,MLモデルが人的戦略応答を組み込んだモデルアノテート標本で再訓練された場合の長期的影響について検討する。
まず,戦略エージェントとモデル間の相互作用を形式化し,それらの動的相互作用の下でどのように進化するかを分析する。
モデルが再訓練されるにつれて、エージェントは肯定的な決定を受ける傾向が増し、一方、ポジティブなラベルを持つエージェントの割合は、時間とともに減少する可能性がある。
そこで本研究では,力学を安定化させる改良されたリトレーニングプロセスを提案する。
最後に、これらの再訓練プロセスによってアルゴリズム的公正性がどのように影響するかを検証し、各ラウンドで共通公正性制約を課すことは、長期的には不利なグループにとって利益にならないことを発見した。
半合成および実データの実験は理論的な結果を検証する。
関連論文リスト
- How Aligned are Generative Models to Humans in High-Stakes Decision-Making? [10.225573060836478]
大規模生成モデル(LM)は、高い意思決定のためにますます検討されている。
この研究は、リシビズム予測の特定のケースにおいて、そのようなモデルが人間や予測AIモデルとどのように比較されるかを検討する。
論文 参考訳(メタデータ) (2024-10-20T19:00:59Z) - Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [115.501751261878]
人為的なデータに基づく微調整言語モデル(LM)が普及している。
我々は、スカラーフィードバックにアクセス可能なタスクにおいて、人間のデータを超えることができるかどうか検討する。
ReST$EM$はモデルサイズに好適にスケールし、人間のデータのみによる微調整を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2023-12-11T18:17:43Z) - Improving Generalization of Alignment with Human Preferences through
Group Invariant Learning [56.19242260613749]
Reinforcement Learning from Human Feedback (RLHF) は、人間の好みに合わせた反応の生成を可能にする。
以前の研究は、強化学習(RL)がしばしばショートカットを利用して高い報酬を獲得し、挑戦的なサンプルを見落としていることを示している。
本稿では,複数のデータグループやドメインにまたがる一貫したポリシをRLで学習する,新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-18T13:54:15Z) - Scaling Laws Do Not Scale [54.72120385955072]
最近の研究によると、データセットのサイズが大きくなると、そのデータセットでトレーニングされたモデルのパフォーマンスが向上する。
このスケーリング法則の関係は、モデルのアウトプットの質を異なる集団がどのように認識するかと一致しないパフォーマンスを測定するために使われる指標に依存する、と我々は主張する。
異なるコミュニティは、互いに緊張関係にある価値を持ち、モデル評価に使用されるメトリクスについて、困難で、潜在的に不可能な選択をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-07-05T15:32:21Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
データや学習アルゴリズムを変更することなく、機械学習モデルの公平性を向上する方法を示す。
異なる集団間の傾向のばらつきと、学習モデルと少数民族間の連続的な傾向は、データドリフトと類似している。
このドリフトを解決するための2つの戦略(モデル分割とリウィーディング)を探索し、基礎となるデータに対するモデル全体の適合性を改善することを目的としている。
論文 参考訳(メタデータ) (2023-03-30T17:30:42Z) - Bias-inducing geometries: an exactly solvable data model with fairness
implications [13.690313475721094]
我々は、正確に解決可能なデータ不均衡の高次元モデルを導入する。
この合成フレームワークで訓練された学習モデルの典型的特性を解析的に解き放つ。
フェアネス評価によく用いられる観測対象の正確な予測値を得る。
論文 参考訳(メタデータ) (2022-05-31T16:27:57Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - Strategic Instrumental Variable Regression: Recovering Causal
Relationships From Strategic Responses [16.874125120501944]
観測可能な特徴と予測したい結果の因果関係を回復するために,戦略的対応を効果的に活用できることが示される。
我々の研究は、機械学習モデルに対する戦略的応答と機器変数(IV)回帰との新たな関係を確立する。
論文 参考訳(メタデータ) (2021-07-12T22:12:56Z) - On the Efficacy of Adversarial Data Collection for Question Answering:
Results from a Large-Scale Randomized Study [65.17429512679695]
逆データ収集(ADC)では、人間の労働力がモデルとリアルタイムで対話し、誤った予測を誘発する例を作成しようとする。
ADCの直感的な魅力にも拘わらず、敵対的データセットのトレーニングがより堅牢なモデルを生成するかどうかは不明だ。
論文 参考訳(メタデータ) (2021-06-02T00:48:33Z) - Data-driven model reduction of agent-based systems using the Koopman
generator [0.3867363075280544]
Koopman 演算子理論がエージェントベースのシステムの縮小モデルを引き出すのにどのように使用できるかを示す。
我々の目標は粗い粒度のモデルを学び、通常の方程式や微分方程式による減少ダイナミクスを表現することである。
論文 参考訳(メタデータ) (2020-12-14T17:12:54Z) - Learning Opinion Dynamics From Social Traces [25.161493874783584]
本稿では,現実の社会的トレースに,生成的,エージェントライクな意見力学モデルを適用するための推論機構を提案する。
本稿では,古典的エージェントに基づく意見力学モデルから,その生成的モデルへの変換による提案について紹介する。
われわれのモデルをRedditの現実世界のデータに適用して、バックファイア効果の影響に関する長年にわたる疑問を探る。
論文 参考訳(メタデータ) (2020-06-02T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。