論文の概要: PrivFED -- A Framework for Privacy-Preserving Federated Learning in Enhanced Breast Cancer Diagnosis
- arxiv url: http://arxiv.org/abs/2405.08084v1
- Date: Mon, 13 May 2024 18:01:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 16:06:44.601852
- Title: PrivFED -- A Framework for Privacy-Preserving Federated Learning in Enhanced Breast Cancer Diagnosis
- Title(参考訳): PrivFED -- 乳がんの早期診断におけるプライバシ保護のためのフェデレーションラーニングフレームワーク
- Authors: Maithili Jha, S. Maitri, M. Lohithdakshan, Shiny Duela J, K. Raja,
- Abstract要約: 本研究では、ウィスコンシンデータセットに基づいてトレーニングされたフェデレーション学習フレームワークを導入し、データの不足や不均衡といった課題を軽減する。
このモデルの平均精度はエッジデバイスで99.95%、中央サーバで98%である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the day-to-day operations of healthcare institutions, a multitude of Personally Identifiable Information (PII) data exchanges occur, exposing the data to a spectrum of cybersecurity threats. This study introduces a federated learning framework, trained on the Wisconsin dataset, to mitigate challenges such as data scarcity and imbalance. Techniques like the Synthetic Minority Over-sampling Technique (SMOTE) are incorporated to bolster robustness, while isolation forests are employed to fortify the model against outliers. Catboost serves as the classification tool across all devices. The identification of optimal features for heightened accuracy is pursued through Principal Component Analysis (PCA),accentuating the significance of hyperparameter tuning, as underscored in a comparative analysis. The model exhibits an average accuracy of 99.95% on edge devices and 98% on the central server.
- Abstract(参考訳): 医療機関の日々の業務では、PII(Personally Identible Information)データ交換が多数発生し、そのデータがサイバーセキュリティの脅威に晒される。
本研究では、ウィスコンシンデータセットに基づいてトレーニングされたフェデレーション学習フレームワークを導入し、データの不足や不均衡といった課題を軽減する。
SMOTE (Synthetic Minority Over-Sampling Technique) のような技術はロバスト性を高めるために組み込まれており、孤立林はオフリージに対するモデル強化のために使用されている。
Catboostは、すべてのデバイスにまたがる分類ツールである。
主成分分析 (PCA) により, 最適特徴の同定を追究し, ハイパーパラメータチューニングの重要性を, 比較分析で強調した。
このモデルの平均精度はエッジデバイスで99.95%、中央サーバで98%である。
関連論文リスト
- Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
侵入検知システム(IDS)は、悪意あるアクターや活動を検出することによって相互接続ネットワークを保護する上で重要な役割を果たす。
本稿では,データ不均衡にRandom Oversampling (RO) を用いる新しいMLベースのネットワーク侵入検出モデルと,次元削減のためのStacking Feature Embedding (PCA)を提案する。
CIC-IDS 2017データセットを使用すると、DT、RF、ETモデルは99.99%の精度に達し、DTとRFモデルはCIC-IDS 2018データセットで99.94%の精度が得られる。
論文 参考訳(メタデータ) (2024-01-22T05:49:41Z) - Boosting Transformer's Robustness and Efficacy in PPG Signal Artifact
Detection with Self-Supervised Learning [0.0]
本研究は、自己教師付き学習(SSL)を用いて、このデータから潜伏した特徴を抽出することにより、豊富なラベル付きデータの未利用に対処する。
実験の結果,SSLはTransformerモデルの表現学習能力を大幅に向上させることがわかった。
このアプローチは、注釈付きデータがしばしば制限されるPICU環境において、より広範なアプリケーションに対して約束される。
論文 参考訳(メタデータ) (2024-01-02T04:00:48Z) - Comparative Analysis of Imbalanced Malware Byteplot Image Classification
using Transfer Learning [0.873811641236639]
マルウェア検知器はマルウェアの署名を比較することでサイバー攻撃を支援する。
本稿では,6つのクラス分類モデルの性能を比較した。
クラス不均衡が大きくなるほど、収束に必要なエポックの数が少なくなる。
論文 参考訳(メタデータ) (2023-10-04T11:33:36Z) - DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism [3.9377491512285157]
DefectHunterは、Conformerメカニズムを利用した脆弱性識別のための革新的なモデルである。
このメカニズムは、畳み込みネットワークと自己意識を融合させ、局所的、位置的特徴とグローバル的、コンテンツに基づく相互作用の両方をキャプチャする。
論文 参考訳(メタデータ) (2023-09-27T00:10:29Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
効率的な生存率分類モデルが包括的に提示される。
欠落した値を入力し、ダミー変数符号化を用いてデータを変換し、チ二乗特徴選択を用いて59個の特徴から11個の最も相関した特徴にデータセットを圧縮することにより、合成データセットを生成する。
この点に関しては、決定木(Decision Tree)、ランダムフォレスト(Random Forest)、ロジスティック回帰(Logistic Regression)、K-Nearest Neighbors(K-Nearest Neighbors)、グラディエントブースティング(Gradient Boosting)、Ada Boost(Ada Boost)、XG Boost(XG Boost)など、いくつかの教師付きML手法が訓練された。
論文 参考訳(メタデータ) (2022-01-22T08:01:22Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。